This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| Assertion | ackbij1lem11 | |- ( ( A e. ( ~P _om i^i Fin ) /\ B C_ A ) -> B e. ( ~P _om i^i Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| 2 | ssexg | |- ( ( B C_ A /\ A e. ( ~P _om i^i Fin ) ) -> B e. _V ) |
|
| 3 | elinel1 | |- ( A e. ( ~P _om i^i Fin ) -> A e. ~P _om ) |
|
| 4 | 3 | elpwid | |- ( A e. ( ~P _om i^i Fin ) -> A C_ _om ) |
| 5 | sstr | |- ( ( B C_ A /\ A C_ _om ) -> B C_ _om ) |
|
| 6 | 4 5 | sylan2 | |- ( ( B C_ A /\ A e. ( ~P _om i^i Fin ) ) -> B C_ _om ) |
| 7 | 2 6 | elpwd | |- ( ( B C_ A /\ A e. ( ~P _om i^i Fin ) ) -> B e. ~P _om ) |
| 8 | 7 | ancoms | |- ( ( A e. ( ~P _om i^i Fin ) /\ B C_ A ) -> B e. ~P _om ) |
| 9 | elinel2 | |- ( A e. ( ~P _om i^i Fin ) -> A e. Fin ) |
|
| 10 | ssfi | |- ( ( A e. Fin /\ B C_ A ) -> B e. Fin ) |
|
| 11 | 9 10 | sylan | |- ( ( A e. ( ~P _om i^i Fin ) /\ B C_ A ) -> B e. Fin ) |
| 12 | 8 11 | elind | |- ( ( A e. ( ~P _om i^i Fin ) /\ B C_ A ) -> B e. ( ~P _om i^i Fin ) ) |