This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value of a power, when the exponent is real. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abscxp2 | |- ( ( A e. CC /\ B e. RR ) -> ( abs ` ( A ^c B ) ) = ( ( abs ` A ) ^c B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red | |- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> 0 e. RR ) |
|
| 2 | 0le0 | |- 0 <_ 0 |
|
| 3 | 2 | a1i | |- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> 0 <_ 0 ) |
| 4 | simplr | |- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> B e. RR ) |
|
| 5 | recxpcl | |- ( ( 0 e. RR /\ 0 <_ 0 /\ B e. RR ) -> ( 0 ^c B ) e. RR ) |
|
| 6 | 1 3 4 5 | syl3anc | |- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> ( 0 ^c B ) e. RR ) |
| 7 | cxpge0 | |- ( ( 0 e. RR /\ 0 <_ 0 /\ B e. RR ) -> 0 <_ ( 0 ^c B ) ) |
|
| 8 | 1 3 4 7 | syl3anc | |- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> 0 <_ ( 0 ^c B ) ) |
| 9 | 6 8 | absidd | |- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> ( abs ` ( 0 ^c B ) ) = ( 0 ^c B ) ) |
| 10 | simpr | |- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> A = 0 ) |
|
| 11 | 10 | oveq1d | |- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> ( A ^c B ) = ( 0 ^c B ) ) |
| 12 | 11 | fveq2d | |- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> ( abs ` ( A ^c B ) ) = ( abs ` ( 0 ^c B ) ) ) |
| 13 | 10 | abs00bd | |- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> ( abs ` A ) = 0 ) |
| 14 | 13 | oveq1d | |- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> ( ( abs ` A ) ^c B ) = ( 0 ^c B ) ) |
| 15 | 9 12 14 | 3eqtr4d | |- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> ( abs ` ( A ^c B ) ) = ( ( abs ` A ) ^c B ) ) |
| 16 | simplr | |- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> B e. RR ) |
|
| 17 | 16 | recnd | |- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> B e. CC ) |
| 18 | logcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
|
| 19 | 18 | adantlr | |- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
| 20 | 17 19 | mulcld | |- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( B x. ( log ` A ) ) e. CC ) |
| 21 | absef | |- ( ( B x. ( log ` A ) ) e. CC -> ( abs ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( exp ` ( Re ` ( B x. ( log ` A ) ) ) ) ) |
|
| 22 | 20 21 | syl | |- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( abs ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( exp ` ( Re ` ( B x. ( log ` A ) ) ) ) ) |
| 23 | 16 19 | remul2d | |- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( Re ` ( B x. ( log ` A ) ) ) = ( B x. ( Re ` ( log ` A ) ) ) ) |
| 24 | relog | |- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) = ( log ` ( abs ` A ) ) ) |
|
| 25 | 24 | adantlr | |- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) = ( log ` ( abs ` A ) ) ) |
| 26 | 25 | oveq2d | |- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( B x. ( Re ` ( log ` A ) ) ) = ( B x. ( log ` ( abs ` A ) ) ) ) |
| 27 | 23 26 | eqtrd | |- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( Re ` ( B x. ( log ` A ) ) ) = ( B x. ( log ` ( abs ` A ) ) ) ) |
| 28 | 27 | fveq2d | |- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( exp ` ( Re ` ( B x. ( log ` A ) ) ) ) = ( exp ` ( B x. ( log ` ( abs ` A ) ) ) ) ) |
| 29 | 22 28 | eqtrd | |- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( abs ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( exp ` ( B x. ( log ` ( abs ` A ) ) ) ) ) |
| 30 | simpll | |- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> A e. CC ) |
|
| 31 | simpr | |- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> A =/= 0 ) |
|
| 32 | cxpef | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
|
| 33 | 30 31 17 32 | syl3anc | |- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
| 34 | 33 | fveq2d | |- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( abs ` ( A ^c B ) ) = ( abs ` ( exp ` ( B x. ( log ` A ) ) ) ) ) |
| 35 | 30 | abscld | |- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( abs ` A ) e. RR ) |
| 36 | 35 | recnd | |- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( abs ` A ) e. CC ) |
| 37 | abs00 | |- ( A e. CC -> ( ( abs ` A ) = 0 <-> A = 0 ) ) |
|
| 38 | 37 | adantr | |- ( ( A e. CC /\ B e. RR ) -> ( ( abs ` A ) = 0 <-> A = 0 ) ) |
| 39 | 38 | necon3bid | |- ( ( A e. CC /\ B e. RR ) -> ( ( abs ` A ) =/= 0 <-> A =/= 0 ) ) |
| 40 | 39 | biimpar | |- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( abs ` A ) =/= 0 ) |
| 41 | cxpef | |- ( ( ( abs ` A ) e. CC /\ ( abs ` A ) =/= 0 /\ B e. CC ) -> ( ( abs ` A ) ^c B ) = ( exp ` ( B x. ( log ` ( abs ` A ) ) ) ) ) |
|
| 42 | 36 40 17 41 | syl3anc | |- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( ( abs ` A ) ^c B ) = ( exp ` ( B x. ( log ` ( abs ` A ) ) ) ) ) |
| 43 | 29 34 42 | 3eqtr4d | |- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( abs ` ( A ^c B ) ) = ( ( abs ` A ) ^c B ) ) |
| 44 | 15 43 | pm2.61dane | |- ( ( A e. CC /\ B e. RR ) -> ( abs ` ( A ^c B ) ) = ( ( abs ` A ) ^c B ) ) |