This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxplt | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( B < C <-> ( A ^c B ) < ( A ^c C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> B e. RR ) |
|
| 2 | rplogcl | |- ( ( A e. RR /\ 1 < A ) -> ( log ` A ) e. RR+ ) |
|
| 3 | 2 | adantr | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( log ` A ) e. RR+ ) |
| 4 | 3 | rpred | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( log ` A ) e. RR ) |
| 5 | 1 4 | remulcld | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( B x. ( log ` A ) ) e. RR ) |
| 6 | simprr | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> C e. RR ) |
|
| 7 | 6 4 | remulcld | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( C x. ( log ` A ) ) e. RR ) |
| 8 | eflt | |- ( ( ( B x. ( log ` A ) ) e. RR /\ ( C x. ( log ` A ) ) e. RR ) -> ( ( B x. ( log ` A ) ) < ( C x. ( log ` A ) ) <-> ( exp ` ( B x. ( log ` A ) ) ) < ( exp ` ( C x. ( log ` A ) ) ) ) ) |
|
| 9 | 5 7 8 | syl2anc | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( ( B x. ( log ` A ) ) < ( C x. ( log ` A ) ) <-> ( exp ` ( B x. ( log ` A ) ) ) < ( exp ` ( C x. ( log ` A ) ) ) ) ) |
| 10 | 1 6 3 | ltmul1d | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( B < C <-> ( B x. ( log ` A ) ) < ( C x. ( log ` A ) ) ) ) |
| 11 | simpll | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> A e. RR ) |
|
| 12 | 11 | recnd | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> A e. CC ) |
| 13 | 0red | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 0 e. RR ) |
|
| 14 | 1red | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 1 e. RR ) |
|
| 15 | 0lt1 | |- 0 < 1 |
|
| 16 | 15 | a1i | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 0 < 1 ) |
| 17 | simplr | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 1 < A ) |
|
| 18 | 13 14 11 16 17 | lttrd | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 0 < A ) |
| 19 | 18 | gt0ne0d | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> A =/= 0 ) |
| 20 | 1 | recnd | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> B e. CC ) |
| 21 | cxpef | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
|
| 22 | 12 19 20 21 | syl3anc | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
| 23 | 6 | recnd | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> C e. CC ) |
| 24 | cxpef | |- ( ( A e. CC /\ A =/= 0 /\ C e. CC ) -> ( A ^c C ) = ( exp ` ( C x. ( log ` A ) ) ) ) |
|
| 25 | 12 19 23 24 | syl3anc | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( A ^c C ) = ( exp ` ( C x. ( log ` A ) ) ) ) |
| 26 | 22 25 | breq12d | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( ( A ^c B ) < ( A ^c C ) <-> ( exp ` ( B x. ( log ` A ) ) ) < ( exp ` ( C x. ( log ` A ) ) ) ) ) |
| 27 | 9 10 26 | 3bitr4d | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( B < C <-> ( A ^c B ) < ( A ^c C ) ) ) |