This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value of a power, when the exponent is real. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abscxp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( ( abs ‘ 𝐴 ) ↑𝑐 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → 0 ∈ ℝ ) | |
| 2 | 0le0 | ⊢ 0 ≤ 0 | |
| 3 | 2 | a1i | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → 0 ≤ 0 ) |
| 4 | simplr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → 𝐵 ∈ ℝ ) | |
| 5 | recxpcl | ⊢ ( ( 0 ∈ ℝ ∧ 0 ≤ 0 ∧ 𝐵 ∈ ℝ ) → ( 0 ↑𝑐 𝐵 ) ∈ ℝ ) | |
| 6 | 1 3 4 5 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → ( 0 ↑𝑐 𝐵 ) ∈ ℝ ) |
| 7 | cxpge0 | ⊢ ( ( 0 ∈ ℝ ∧ 0 ≤ 0 ∧ 𝐵 ∈ ℝ ) → 0 ≤ ( 0 ↑𝑐 𝐵 ) ) | |
| 8 | 1 3 4 7 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → 0 ≤ ( 0 ↑𝑐 𝐵 ) ) |
| 9 | 6 8 | absidd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → ( abs ‘ ( 0 ↑𝑐 𝐵 ) ) = ( 0 ↑𝑐 𝐵 ) ) |
| 10 | simpr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → 𝐴 = 0 ) | |
| 11 | 10 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 0 ↑𝑐 𝐵 ) ) |
| 12 | 11 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( abs ‘ ( 0 ↑𝑐 𝐵 ) ) ) |
| 13 | 10 | abs00bd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → ( abs ‘ 𝐴 ) = 0 ) |
| 14 | 13 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → ( ( abs ‘ 𝐴 ) ↑𝑐 𝐵 ) = ( 0 ↑𝑐 𝐵 ) ) |
| 15 | 9 12 14 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( ( abs ‘ 𝐴 ) ↑𝑐 𝐵 ) ) |
| 16 | simplr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → 𝐵 ∈ ℝ ) | |
| 17 | 16 | recnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → 𝐵 ∈ ℂ ) |
| 18 | logcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) | |
| 19 | 18 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 20 | 17 19 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 21 | absef | ⊢ ( ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ → ( abs ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
| 23 | 16 19 | remul2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) = ( 𝐵 · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 24 | relog | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) = ( log ‘ ( abs ‘ 𝐴 ) ) ) | |
| 25 | 24 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) = ( log ‘ ( abs ‘ 𝐴 ) ) ) |
| 26 | 25 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( 𝐵 · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) = ( 𝐵 · ( log ‘ ( abs ‘ 𝐴 ) ) ) ) |
| 27 | 23 26 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) = ( 𝐵 · ( log ‘ ( abs ‘ 𝐴 ) ) ) ) |
| 28 | 27 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( 𝐵 · ( log ‘ ( abs ‘ 𝐴 ) ) ) ) ) |
| 29 | 22 28 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( 𝐵 · ( log ‘ ( abs ‘ 𝐴 ) ) ) ) ) |
| 30 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) | |
| 31 | simpr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 ) | |
| 32 | cxpef | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) | |
| 33 | 30 31 17 32 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
| 34 | 33 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( abs ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
| 35 | 30 | abscld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 36 | 35 | recnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 37 | abs00 | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) | |
| 38 | 37 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) |
| 39 | 38 | necon3bid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) |
| 40 | 39 | biimpar | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 41 | cxpef | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐴 ) ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ ( abs ‘ 𝐴 ) ) ) ) ) | |
| 42 | 36 40 17 41 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ ( abs ‘ 𝐴 ) ) ) ) ) |
| 43 | 29 34 42 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( ( abs ‘ 𝐴 ) ↑𝑐 𝐵 ) ) |
| 44 | 15 43 | pm2.61dane | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( ( abs ‘ 𝐴 ) ↑𝑐 𝐵 ) ) |