This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Real closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recxpcl | |- ( ( A e. RR /\ 0 <_ A /\ B e. RR ) -> ( A ^c B ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | recn | |- ( B e. RR -> B e. CC ) |
|
| 3 | cxpval | |- ( ( A e. CC /\ B e. CC ) -> ( A ^c B ) = if ( A = 0 , if ( B = 0 , 1 , 0 ) , ( exp ` ( B x. ( log ` A ) ) ) ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A ^c B ) = if ( A = 0 , if ( B = 0 , 1 , 0 ) , ( exp ` ( B x. ( log ` A ) ) ) ) ) |
| 5 | 4 | 3adant2 | |- ( ( A e. RR /\ 0 <_ A /\ B e. RR ) -> ( A ^c B ) = if ( A = 0 , if ( B = 0 , 1 , 0 ) , ( exp ` ( B x. ( log ` A ) ) ) ) ) |
| 6 | 1re | |- 1 e. RR |
|
| 7 | 0re | |- 0 e. RR |
|
| 8 | 6 7 | ifcli | |- if ( B = 0 , 1 , 0 ) e. RR |
| 9 | 8 | a1i | |- ( ( ( A e. RR /\ 0 <_ A /\ B e. RR ) /\ A = 0 ) -> if ( B = 0 , 1 , 0 ) e. RR ) |
| 10 | df-ne | |- ( A =/= 0 <-> -. A = 0 ) |
|
| 11 | simpl3 | |- ( ( ( A e. RR /\ 0 <_ A /\ B e. RR ) /\ A =/= 0 ) -> B e. RR ) |
|
| 12 | simpl1 | |- ( ( ( A e. RR /\ 0 <_ A /\ B e. RR ) /\ A =/= 0 ) -> A e. RR ) |
|
| 13 | simpl2 | |- ( ( ( A e. RR /\ 0 <_ A /\ B e. RR ) /\ A =/= 0 ) -> 0 <_ A ) |
|
| 14 | simpr | |- ( ( ( A e. RR /\ 0 <_ A /\ B e. RR ) /\ A =/= 0 ) -> A =/= 0 ) |
|
| 15 | 12 13 14 | ne0gt0d | |- ( ( ( A e. RR /\ 0 <_ A /\ B e. RR ) /\ A =/= 0 ) -> 0 < A ) |
| 16 | 12 15 | elrpd | |- ( ( ( A e. RR /\ 0 <_ A /\ B e. RR ) /\ A =/= 0 ) -> A e. RR+ ) |
| 17 | 16 | relogcld | |- ( ( ( A e. RR /\ 0 <_ A /\ B e. RR ) /\ A =/= 0 ) -> ( log ` A ) e. RR ) |
| 18 | 11 17 | remulcld | |- ( ( ( A e. RR /\ 0 <_ A /\ B e. RR ) /\ A =/= 0 ) -> ( B x. ( log ` A ) ) e. RR ) |
| 19 | 18 | reefcld | |- ( ( ( A e. RR /\ 0 <_ A /\ B e. RR ) /\ A =/= 0 ) -> ( exp ` ( B x. ( log ` A ) ) ) e. RR ) |
| 20 | 10 19 | sylan2br | |- ( ( ( A e. RR /\ 0 <_ A /\ B e. RR ) /\ -. A = 0 ) -> ( exp ` ( B x. ( log ` A ) ) ) e. RR ) |
| 21 | 9 20 | ifclda | |- ( ( A e. RR /\ 0 <_ A /\ B e. RR ) -> if ( A = 0 , if ( B = 0 , 1 , 0 ) , ( exp ` ( B x. ( log ` A ) ) ) ) e. RR ) |
| 22 | 5 21 | eqeltrd | |- ( ( A e. RR /\ 0 <_ A /\ B e. RR ) -> ( A ^c B ) e. RR ) |