This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 15-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sqlem5.2 | |- ( ph -> A e. ZZ ) |
|
| 4sqlem5.3 | |- ( ph -> M e. NN ) |
||
| 4sqlem5.4 | |- B = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| Assertion | 4sqlem8 | |- ( ph -> M || ( ( A ^ 2 ) - ( B ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlem5.2 | |- ( ph -> A e. ZZ ) |
|
| 2 | 4sqlem5.3 | |- ( ph -> M e. NN ) |
|
| 3 | 4sqlem5.4 | |- B = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 4 | 2 | nnzd | |- ( ph -> M e. ZZ ) |
| 5 | 1 2 3 | 4sqlem5 | |- ( ph -> ( B e. ZZ /\ ( ( A - B ) / M ) e. ZZ ) ) |
| 6 | 5 | simpld | |- ( ph -> B e. ZZ ) |
| 7 | 1 6 | zsubcld | |- ( ph -> ( A - B ) e. ZZ ) |
| 8 | zsqcl | |- ( A e. ZZ -> ( A ^ 2 ) e. ZZ ) |
|
| 9 | 1 8 | syl | |- ( ph -> ( A ^ 2 ) e. ZZ ) |
| 10 | zsqcl | |- ( B e. ZZ -> ( B ^ 2 ) e. ZZ ) |
|
| 11 | 6 10 | syl | |- ( ph -> ( B ^ 2 ) e. ZZ ) |
| 12 | 9 11 | zsubcld | |- ( ph -> ( ( A ^ 2 ) - ( B ^ 2 ) ) e. ZZ ) |
| 13 | 5 | simprd | |- ( ph -> ( ( A - B ) / M ) e. ZZ ) |
| 14 | 2 | nnne0d | |- ( ph -> M =/= 0 ) |
| 15 | dvdsval2 | |- ( ( M e. ZZ /\ M =/= 0 /\ ( A - B ) e. ZZ ) -> ( M || ( A - B ) <-> ( ( A - B ) / M ) e. ZZ ) ) |
|
| 16 | 4 14 7 15 | syl3anc | |- ( ph -> ( M || ( A - B ) <-> ( ( A - B ) / M ) e. ZZ ) ) |
| 17 | 13 16 | mpbird | |- ( ph -> M || ( A - B ) ) |
| 18 | 1 6 | zaddcld | |- ( ph -> ( A + B ) e. ZZ ) |
| 19 | dvdsmul2 | |- ( ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) -> ( A - B ) || ( ( A + B ) x. ( A - B ) ) ) |
|
| 20 | 18 7 19 | syl2anc | |- ( ph -> ( A - B ) || ( ( A + B ) x. ( A - B ) ) ) |
| 21 | 1 | zcnd | |- ( ph -> A e. CC ) |
| 22 | 6 | zcnd | |- ( ph -> B e. CC ) |
| 23 | subsq | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( A + B ) x. ( A - B ) ) ) |
|
| 24 | 21 22 23 | syl2anc | |- ( ph -> ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( A + B ) x. ( A - B ) ) ) |
| 25 | 20 24 | breqtrrd | |- ( ph -> ( A - B ) || ( ( A ^ 2 ) - ( B ^ 2 ) ) ) |
| 26 | 4 7 12 17 25 | dvdstrd | |- ( ph -> M || ( ( A ^ 2 ) - ( B ^ 2 ) ) ) |