This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the vertex degree function for a simple hypergraph. (Contributed by AV, 12-Dec-2020) (Proof shortened by AV, 5-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdushgrfvedg.v | |- V = ( Vtx ` G ) |
|
| vtxdushgrfvedg.e | |- E = ( Edg ` G ) |
||
| vtxdushgrfvedg.d | |- D = ( VtxDeg ` G ) |
||
| Assertion | vtxdushgrfvedg | |- ( ( G e. USHGraph /\ U e. V ) -> ( D ` U ) = ( ( # ` { e e. E | U e. e } ) +e ( # ` { e e. E | e = { U } } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdushgrfvedg.v | |- V = ( Vtx ` G ) |
|
| 2 | vtxdushgrfvedg.e | |- E = ( Edg ` G ) |
|
| 3 | vtxdushgrfvedg.d | |- D = ( VtxDeg ` G ) |
|
| 4 | 3 | fveq1i | |- ( D ` U ) = ( ( VtxDeg ` G ) ` U ) |
| 5 | 4 | a1i | |- ( ( G e. USHGraph /\ U e. V ) -> ( D ` U ) = ( ( VtxDeg ` G ) ` U ) ) |
| 6 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 7 | eqid | |- dom ( iEdg ` G ) = dom ( iEdg ` G ) |
|
| 8 | 1 6 7 | vtxdgval | |- ( U e. V -> ( ( VtxDeg ` G ) ` U ) = ( ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) +e ( # ` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } ) ) ) |
| 9 | 8 | adantl | |- ( ( G e. USHGraph /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = ( ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) +e ( # ` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } ) ) ) |
| 10 | 1 2 | vtxdushgrfvedglem | |- ( ( G e. USHGraph /\ U e. V ) -> ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) = ( # ` { e e. E | U e. e } ) ) |
| 11 | fvex | |- ( iEdg ` G ) e. _V |
|
| 12 | 11 | dmex | |- dom ( iEdg ` G ) e. _V |
| 13 | 12 | rabex | |- { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } e. _V |
| 14 | 13 | a1i | |- ( ( G e. USHGraph /\ U e. V ) -> { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } e. _V ) |
| 15 | eqid | |- { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } = { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } |
|
| 16 | eqeq1 | |- ( e = c -> ( e = { U } <-> c = { U } ) ) |
|
| 17 | 16 | cbvrabv | |- { e e. E | e = { U } } = { c e. E | c = { U } } |
| 18 | eqid | |- ( x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } |-> ( ( iEdg ` G ) ` x ) ) = ( x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } |-> ( ( iEdg ` G ) ` x ) ) |
|
| 19 | 2 6 15 17 18 | ushgredgedgloop | |- ( ( G e. USHGraph /\ U e. V ) -> ( x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } |-> ( ( iEdg ` G ) ` x ) ) : { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } -1-1-onto-> { e e. E | e = { U } } ) |
| 20 | 14 19 | hasheqf1od | |- ( ( G e. USHGraph /\ U e. V ) -> ( # ` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } ) = ( # ` { e e. E | e = { U } } ) ) |
| 21 | 10 20 | oveq12d | |- ( ( G e. USHGraph /\ U e. V ) -> ( ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) +e ( # ` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } ) ) = ( ( # ` { e e. E | U e. e } ) +e ( # ` { e e. E | e = { U } } ) ) ) |
| 22 | 5 9 21 | 3eqtrd | |- ( ( G e. USHGraph /\ U e. V ) -> ( D ` U ) = ( ( # ` { e e. E | U e. e } ) +e ( # ` { e e. E | e = { U } } ) ) ) |