This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A graph with one edge which is a loop is a simple pseudograph (see also uspgr1v1eop ). (Contributed by AV, 21-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1loopgruspgr.v | |- ( ph -> ( Vtx ` G ) = V ) |
|
| 1loopgruspgr.a | |- ( ph -> A e. X ) |
||
| 1loopgruspgr.n | |- ( ph -> N e. V ) |
||
| 1loopgruspgr.i | |- ( ph -> ( iEdg ` G ) = { <. A , { N } >. } ) |
||
| Assertion | 1loopgruspgr | |- ( ph -> G e. USPGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1loopgruspgr.v | |- ( ph -> ( Vtx ` G ) = V ) |
|
| 2 | 1loopgruspgr.a | |- ( ph -> A e. X ) |
|
| 3 | 1loopgruspgr.n | |- ( ph -> N e. V ) |
|
| 4 | 1loopgruspgr.i | |- ( ph -> ( iEdg ` G ) = { <. A , { N } >. } ) |
|
| 5 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 6 | 3 1 | eleqtrrd | |- ( ph -> N e. ( Vtx ` G ) ) |
| 7 | dfsn2 | |- { N } = { N , N } |
|
| 8 | 7 | a1i | |- ( ph -> { N } = { N , N } ) |
| 9 | 8 | opeq2d | |- ( ph -> <. A , { N } >. = <. A , { N , N } >. ) |
| 10 | 9 | sneqd | |- ( ph -> { <. A , { N } >. } = { <. A , { N , N } >. } ) |
| 11 | 4 10 | eqtrd | |- ( ph -> ( iEdg ` G ) = { <. A , { N , N } >. } ) |
| 12 | 5 2 6 6 11 | uspgr1e | |- ( ph -> G e. USPGraph ) |