This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree of a one-edge graph, case 1 (for a loop): a loop at a vertex other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 21-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1loopgruspgr.v | |- ( ph -> ( Vtx ` G ) = V ) |
|
| 1loopgruspgr.a | |- ( ph -> A e. X ) |
||
| 1loopgruspgr.n | |- ( ph -> N e. V ) |
||
| 1loopgruspgr.i | |- ( ph -> ( iEdg ` G ) = { <. A , { N } >. } ) |
||
| 1loopgrvd0.k | |- ( ph -> K e. ( V \ { N } ) ) |
||
| Assertion | 1loopgrvd0 | |- ( ph -> ( ( VtxDeg ` G ) ` K ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1loopgruspgr.v | |- ( ph -> ( Vtx ` G ) = V ) |
|
| 2 | 1loopgruspgr.a | |- ( ph -> A e. X ) |
|
| 3 | 1loopgruspgr.n | |- ( ph -> N e. V ) |
|
| 4 | 1loopgruspgr.i | |- ( ph -> ( iEdg ` G ) = { <. A , { N } >. } ) |
|
| 5 | 1loopgrvd0.k | |- ( ph -> K e. ( V \ { N } ) ) |
|
| 6 | 5 | eldifbd | |- ( ph -> -. K e. { N } ) |
| 7 | snex | |- { N } e. _V |
|
| 8 | fvsng | |- ( ( A e. X /\ { N } e. _V ) -> ( { <. A , { N } >. } ` A ) = { N } ) |
|
| 9 | 2 7 8 | sylancl | |- ( ph -> ( { <. A , { N } >. } ` A ) = { N } ) |
| 10 | 9 | eleq2d | |- ( ph -> ( K e. ( { <. A , { N } >. } ` A ) <-> K e. { N } ) ) |
| 11 | 6 10 | mtbird | |- ( ph -> -. K e. ( { <. A , { N } >. } ` A ) ) |
| 12 | 4 | dmeqd | |- ( ph -> dom ( iEdg ` G ) = dom { <. A , { N } >. } ) |
| 13 | dmsnopg | |- ( { N } e. _V -> dom { <. A , { N } >. } = { A } ) |
|
| 14 | 7 13 | mp1i | |- ( ph -> dom { <. A , { N } >. } = { A } ) |
| 15 | 12 14 | eqtrd | |- ( ph -> dom ( iEdg ` G ) = { A } ) |
| 16 | 4 | fveq1d | |- ( ph -> ( ( iEdg ` G ) ` i ) = ( { <. A , { N } >. } ` i ) ) |
| 17 | 16 | eleq2d | |- ( ph -> ( K e. ( ( iEdg ` G ) ` i ) <-> K e. ( { <. A , { N } >. } ` i ) ) ) |
| 18 | 15 17 | rexeqbidv | |- ( ph -> ( E. i e. dom ( iEdg ` G ) K e. ( ( iEdg ` G ) ` i ) <-> E. i e. { A } K e. ( { <. A , { N } >. } ` i ) ) ) |
| 19 | fveq2 | |- ( i = A -> ( { <. A , { N } >. } ` i ) = ( { <. A , { N } >. } ` A ) ) |
|
| 20 | 19 | eleq2d | |- ( i = A -> ( K e. ( { <. A , { N } >. } ` i ) <-> K e. ( { <. A , { N } >. } ` A ) ) ) |
| 21 | 20 | rexsng | |- ( A e. X -> ( E. i e. { A } K e. ( { <. A , { N } >. } ` i ) <-> K e. ( { <. A , { N } >. } ` A ) ) ) |
| 22 | 2 21 | syl | |- ( ph -> ( E. i e. { A } K e. ( { <. A , { N } >. } ` i ) <-> K e. ( { <. A , { N } >. } ` A ) ) ) |
| 23 | 18 22 | bitrd | |- ( ph -> ( E. i e. dom ( iEdg ` G ) K e. ( ( iEdg ` G ) ` i ) <-> K e. ( { <. A , { N } >. } ` A ) ) ) |
| 24 | 11 23 | mtbird | |- ( ph -> -. E. i e. dom ( iEdg ` G ) K e. ( ( iEdg ` G ) ` i ) ) |
| 25 | 5 | eldifad | |- ( ph -> K e. V ) |
| 26 | 1 | eleq2d | |- ( ph -> ( K e. ( Vtx ` G ) <-> K e. V ) ) |
| 27 | 25 26 | mpbird | |- ( ph -> K e. ( Vtx ` G ) ) |
| 28 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 29 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 30 | eqid | |- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
|
| 31 | 28 29 30 | vtxd0nedgb | |- ( K e. ( Vtx ` G ) -> ( ( ( VtxDeg ` G ) ` K ) = 0 <-> -. E. i e. dom ( iEdg ` G ) K e. ( ( iEdg ` G ) ` i ) ) ) |
| 32 | 27 31 | syl | |- ( ph -> ( ( ( VtxDeg ` G ) ` K ) = 0 <-> -. E. i e. dom ( iEdg ` G ) K e. ( ( iEdg ` G ) ` i ) ) ) |
| 33 | 24 32 | mpbird | |- ( ph -> ( ( VtxDeg ` G ) ` K ) = 0 ) |