This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple pseudograph is an undirected simple hypergraph. (Contributed by AV, 19-Jan-2020) (Revised by AV, 15-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uspgrushgr | |- ( G e. USPGraph -> G e. USHGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 3 | 1 2 | isuspgr | |- ( G e. USPGraph -> ( G e. USPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 4 | ssrab2 | |- { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } C_ ( ~P ( Vtx ` G ) \ { (/) } ) |
|
| 5 | f1ss | |- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } /\ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } C_ ( ~P ( Vtx ` G ) \ { (/) } ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
|
| 6 | 4 5 | mpan2 | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 7 | 3 6 | biimtrdi | |- ( G e. USPGraph -> ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) |
| 8 | 1 2 | isushgr | |- ( G e. USPGraph -> ( G e. USHGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) |
| 9 | 7 8 | sylibrd | |- ( G e. USPGraph -> ( G e. USPGraph -> G e. USHGraph ) ) |
| 10 | 9 | pm2.43i | |- ( G e. USPGraph -> G e. USHGraph ) |