This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any nonempty bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-sup .) (Contributed by Mario Carneiro, 21-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zsupss | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑦 = 𝑚 → ( 𝑦 ≤ 𝑥 ↔ 𝑚 ≤ 𝑥 ) ) | |
| 2 | 1 | cbvralvw | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑥 ) |
| 3 | breq2 | ⊢ ( 𝑥 = 𝑛 → ( 𝑚 ≤ 𝑥 ↔ 𝑚 ≤ 𝑛 ) ) | |
| 4 | 3 | ralbidv | ⊢ ( 𝑥 = 𝑛 → ( ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑥 ↔ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) |
| 5 | 2 4 | bitrid | ⊢ ( 𝑥 = 𝑛 → ( ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) |
| 6 | 5 | cbvrexvw | ⊢ ( ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∃ 𝑛 ∈ ℤ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) |
| 7 | simp1rl | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → 𝑛 ∈ ℤ ) | |
| 8 | 7 | znegcld | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → - 𝑛 ∈ ℤ ) |
| 9 | simp2 | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ℤ ) | |
| 10 | 9 | zred | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ℝ ) |
| 11 | 7 | zred | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → 𝑛 ∈ ℝ ) |
| 12 | breq1 | ⊢ ( 𝑚 = - 𝑤 → ( 𝑚 ≤ 𝑛 ↔ - 𝑤 ≤ 𝑛 ) ) | |
| 13 | simp1rr | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) | |
| 14 | simp3 | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → - 𝑤 ∈ 𝐴 ) | |
| 15 | 12 13 14 | rspcdva | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → - 𝑤 ≤ 𝑛 ) |
| 16 | 10 11 15 | lenegcon1d | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → - 𝑛 ≤ 𝑤 ) |
| 17 | eluz2 | ⊢ ( 𝑤 ∈ ( ℤ≥ ‘ - 𝑛 ) ↔ ( - 𝑛 ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ - 𝑛 ≤ 𝑤 ) ) | |
| 18 | 8 9 16 17 | syl3anbrc | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ( ℤ≥ ‘ - 𝑛 ) ) |
| 19 | 18 | rabssdv | ⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ⊆ ( ℤ≥ ‘ - 𝑛 ) ) |
| 20 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑛 𝑛 ∈ 𝐴 ) | |
| 21 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ ℤ ) | |
| 22 | 21 | znegcld | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → - 𝑛 ∈ ℤ ) |
| 23 | 21 | zcnd | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ ℂ ) |
| 24 | 23 | negnegd | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → - - 𝑛 = 𝑛 ) |
| 25 | simpr | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ 𝐴 ) | |
| 26 | 24 25 | eqeltrd | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → - - 𝑛 ∈ 𝐴 ) |
| 27 | negeq | ⊢ ( 𝑤 = - 𝑛 → - 𝑤 = - - 𝑛 ) | |
| 28 | 27 | eleq1d | ⊢ ( 𝑤 = - 𝑛 → ( - 𝑤 ∈ 𝐴 ↔ - - 𝑛 ∈ 𝐴 ) ) |
| 29 | 28 | rspcev | ⊢ ( ( - 𝑛 ∈ ℤ ∧ - - 𝑛 ∈ 𝐴 ) → ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) |
| 30 | 22 26 29 | syl2anc | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) |
| 31 | 30 | ex | ⊢ ( 𝐴 ⊆ ℤ → ( 𝑛 ∈ 𝐴 → ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) ) |
| 32 | 31 | exlimdv | ⊢ ( 𝐴 ⊆ ℤ → ( ∃ 𝑛 𝑛 ∈ 𝐴 → ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) ) |
| 33 | 32 | imp | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑛 𝑛 ∈ 𝐴 ) → ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) |
| 34 | 20 33 | sylan2b | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) → ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) |
| 35 | 34 | adantr | ⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) |
| 36 | rabn0 | ⊢ ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ≠ ∅ ↔ ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) | |
| 37 | 35 36 | sylibr | ⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ≠ ∅ ) |
| 38 | infssuzcl | ⊢ ( ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ⊆ ( ℤ≥ ‘ - 𝑛 ) ∧ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ≠ ∅ ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ) | |
| 39 | 19 37 38 | syl2anc | ⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ) |
| 40 | negeq | ⊢ ( 𝑛 = inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → - 𝑛 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ) | |
| 41 | 40 | eleq1d | ⊢ ( 𝑛 = inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( - 𝑛 ∈ 𝐴 ↔ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ 𝐴 ) ) |
| 42 | negeq | ⊢ ( 𝑤 = 𝑛 → - 𝑤 = - 𝑛 ) | |
| 43 | 42 | eleq1d | ⊢ ( 𝑤 = 𝑛 → ( - 𝑤 ∈ 𝐴 ↔ - 𝑛 ∈ 𝐴 ) ) |
| 44 | 43 | cbvrabv | ⊢ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } = { 𝑛 ∈ ℤ ∣ - 𝑛 ∈ 𝐴 } |
| 45 | 41 44 | elrab2 | ⊢ ( inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ↔ ( inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ ℤ ∧ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ 𝐴 ) ) |
| 46 | 45 | simprbi | ⊢ ( inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } → - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ 𝐴 ) |
| 47 | 39 46 | syl | ⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ 𝐴 ) |
| 48 | simpll | ⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → 𝐴 ⊆ ℤ ) | |
| 49 | 48 | sselda | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℤ ) |
| 50 | 49 | zred | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
| 51 | ssrab2 | ⊢ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ⊆ ℤ | |
| 52 | 39 | adantr | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ) |
| 53 | 51 52 | sselid | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ ℤ ) |
| 54 | 53 | znegcld | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ ℤ ) |
| 55 | 54 | zred | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
| 56 | 53 | zred | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
| 57 | 19 | adantr | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ⊆ ( ℤ≥ ‘ - 𝑛 ) ) |
| 58 | negeq | ⊢ ( 𝑤 = - 𝑦 → - 𝑤 = - - 𝑦 ) | |
| 59 | 58 | eleq1d | ⊢ ( 𝑤 = - 𝑦 → ( - 𝑤 ∈ 𝐴 ↔ - - 𝑦 ∈ 𝐴 ) ) |
| 60 | 49 | znegcld | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → - 𝑦 ∈ ℤ ) |
| 61 | 49 | zcnd | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℂ ) |
| 62 | 61 | negnegd | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → - - 𝑦 = 𝑦 ) |
| 63 | simpr | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) | |
| 64 | 62 63 | eqeltrd | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → - - 𝑦 ∈ 𝐴 ) |
| 65 | 59 60 64 | elrabd | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → - 𝑦 ∈ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ) |
| 66 | infssuzle | ⊢ ( ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ⊆ ( ℤ≥ ‘ - 𝑛 ) ∧ - 𝑦 ∈ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ≤ - 𝑦 ) | |
| 67 | 57 65 66 | syl2anc | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ≤ - 𝑦 ) |
| 68 | 56 50 67 | lenegcon2d | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ≤ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ) |
| 69 | 50 55 68 | lensymd | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) < 𝑦 ) |
| 70 | 69 | ralrimiva | ⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → ∀ 𝑦 ∈ 𝐴 ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) < 𝑦 ) |
| 71 | breq2 | ⊢ ( 𝑧 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( 𝑦 < 𝑧 ↔ 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ) ) | |
| 72 | 71 | rspcev | ⊢ ( ( - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ 𝐴 ∧ 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) |
| 73 | 72 | ex | ⊢ ( - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ 𝐴 → ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
| 74 | 47 73 | syl | ⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
| 75 | 74 | ralrimivw | ⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → ∀ 𝑦 ∈ 𝐵 ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
| 76 | breq1 | ⊢ ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( 𝑥 < 𝑦 ↔ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) < 𝑦 ) ) | |
| 77 | 76 | notbid | ⊢ ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( ¬ 𝑥 < 𝑦 ↔ ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) < 𝑦 ) ) |
| 78 | 77 | ralbidv | ⊢ ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) < 𝑦 ) ) |
| 79 | breq2 | ⊢ ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( 𝑦 < 𝑥 ↔ 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ) ) | |
| 80 | 79 | imbi1d | ⊢ ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| 81 | 80 | ralbidv | ⊢ ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| 82 | 78 81 | anbi12d | ⊢ ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
| 83 | 82 | rspcev | ⊢ ( ( - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ 𝐴 ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| 84 | 47 70 75 83 | syl12anc | ⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| 85 | 84 | rexlimdvaa | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑛 ∈ ℤ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
| 86 | 6 85 | biimtrid | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
| 87 | 86 | 3impia | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |