This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqeu.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | eqeu | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ) → ∃! 𝑥 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeu.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | 1 | spcegv | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝜓 → ∃ 𝑥 𝜑 ) ) |
| 3 | 2 | imp | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) → ∃ 𝑥 𝜑 ) |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ) → ∃ 𝑥 𝜑 ) |
| 5 | eqeq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) | |
| 6 | 5 | imbi2d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝜑 → 𝑥 = 𝑦 ) ↔ ( 𝜑 → 𝑥 = 𝐴 ) ) ) |
| 7 | 6 | albidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ) ) |
| 8 | 7 | spcegv | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ) → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 10 | 9 | 3adant2 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ) → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 11 | eu3v | ⊢ ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) | |
| 12 | 4 10 11 | sylanbrc | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ) → ∃! 𝑥 𝜑 ) |