This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero ring is not an initial object in the category of unital rings (if the universe contains at least one unital ring different from the zero ring). (Contributed by AV, 18-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrtermoringc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| zrtermoringc.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | ||
| zrtermoringc.z | ⊢ ( 𝜑 → 𝑍 ∈ ( Ring ∖ NzRing ) ) | ||
| zrtermoringc.e | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | ||
| zrninitoringc.e | ⊢ ( 𝜑 → ∃ 𝑟 ∈ ( Base ‘ 𝐶 ) 𝑟 ∈ NzRing ) | ||
| Assertion | zrninitoringc | ⊢ ( 𝜑 → 𝑍 ∉ ( InitO ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrtermoringc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 2 | zrtermoringc.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
| 3 | zrtermoringc.z | ⊢ ( 𝜑 → 𝑍 ∈ ( Ring ∖ NzRing ) ) | |
| 4 | zrtermoringc.e | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | |
| 5 | zrninitoringc.e | ⊢ ( 𝜑 → ∃ 𝑟 ∈ ( Base ‘ 𝐶 ) 𝑟 ∈ NzRing ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 7 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → 𝑈 ∈ 𝑉 ) |
| 8 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 9 | 3 | eldifad | ⊢ ( 𝜑 → 𝑍 ∈ Ring ) |
| 10 | 4 9 | elind | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝑈 ∩ Ring ) ) |
| 11 | 2 6 1 | ringcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Ring ) ) |
| 12 | 10 11 | eleqtrrd | ⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 13 | 12 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 14 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → 𝑟 ∈ ( Base ‘ 𝐶 ) ) | |
| 15 | 2 6 7 8 13 14 | ringchom | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) = ( 𝑍 RingHom 𝑟 ) ) |
| 16 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑍 ∈ ( Ring ∖ NzRing ) ) |
| 17 | nrhmzr | ⊢ ( ( 𝑍 ∈ ( Ring ∖ NzRing ) ∧ 𝑟 ∈ NzRing ) → ( 𝑍 RingHom 𝑟 ) = ∅ ) | |
| 18 | 16 17 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → ( 𝑍 RingHom 𝑟 ) = ∅ ) |
| 19 | 15 18 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) = ∅ ) |
| 20 | eq0 | ⊢ ( ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) = ∅ ↔ ∀ ℎ ¬ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) | |
| 21 | 19 20 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → ∀ ℎ ¬ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) |
| 22 | alnex | ⊢ ( ∀ ℎ ¬ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ↔ ¬ ∃ ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) | |
| 23 | 21 22 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → ¬ ∃ ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) |
| 24 | euex | ⊢ ( ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) → ∃ ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) | |
| 25 | 23 24 | nsyl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → ¬ ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) |
| 26 | 25 | ex | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑟 ∈ NzRing → ¬ ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) ) |
| 27 | 26 | reximdva | ⊢ ( 𝜑 → ( ∃ 𝑟 ∈ ( Base ‘ 𝐶 ) 𝑟 ∈ NzRing → ∃ 𝑟 ∈ ( Base ‘ 𝐶 ) ¬ ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) ) |
| 28 | 5 27 | mpd | ⊢ ( 𝜑 → ∃ 𝑟 ∈ ( Base ‘ 𝐶 ) ¬ ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) |
| 29 | rexnal | ⊢ ( ∃ 𝑟 ∈ ( Base ‘ 𝐶 ) ¬ ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ↔ ¬ ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) | |
| 30 | 28 29 | sylib | ⊢ ( 𝜑 → ¬ ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) |
| 31 | df-nel | ⊢ ( 𝑍 ∉ ( InitO ‘ 𝐶 ) ↔ ¬ 𝑍 ∈ ( InitO ‘ 𝐶 ) ) | |
| 32 | 2 | ringccat | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 33 | 1 32 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 34 | 6 8 33 12 | isinito | ⊢ ( 𝜑 → ( 𝑍 ∈ ( InitO ‘ 𝐶 ) ↔ ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) ) |
| 35 | 34 | notbid | ⊢ ( 𝜑 → ( ¬ 𝑍 ∈ ( InitO ‘ 𝐶 ) ↔ ¬ ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) ) |
| 36 | 31 35 | bitrid | ⊢ ( 𝜑 → ( 𝑍 ∉ ( InitO ‘ 𝐶 ) ↔ ¬ ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) ) |
| 37 | 30 36 | mpbird | ⊢ ( 𝜑 → 𝑍 ∉ ( InitO ‘ 𝐶 ) ) |