This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant mapping to zero is a ring homomorphism from any ring to the zero ring. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | c0rhm.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| c0rhm.0 | ⊢ 0 = ( 0g ‘ 𝑇 ) | ||
| c0rhm.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) | ||
| Assertion | c0rhm | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( 𝑆 RingHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0rhm.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 2 | c0rhm.0 | ⊢ 0 = ( 0g ‘ 𝑇 ) | |
| 3 | c0rhm.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) | |
| 4 | eldifi | ⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Ring ) | |
| 5 | 4 | anim2i | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝑆 ∈ Ring ∧ 𝑇 ∈ Ring ) ) |
| 6 | ringgrp | ⊢ ( 𝑆 ∈ Ring → 𝑆 ∈ Grp ) | |
| 7 | ringgrp | ⊢ ( 𝑇 ∈ Ring → 𝑇 ∈ Grp ) | |
| 8 | 4 7 | syl | ⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Grp ) |
| 9 | 1 2 3 | c0ghm | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 10 | 6 8 9 | syl2an | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 11 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 12 | eqid | ⊢ ( 1r ‘ 𝑇 ) = ( 1r ‘ 𝑇 ) | |
| 13 | 11 2 12 | 0ring1eq0 | ⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( 1r ‘ 𝑇 ) = 0 ) |
| 14 | 13 | eqcomd | ⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 0 = ( 1r ‘ 𝑇 ) ) |
| 15 | 14 | mpteq2dv | ⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( 𝑥 ∈ 𝐵 ↦ 0 ) = ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ) |
| 16 | 15 | adantl | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝑥 ∈ 𝐵 ↦ 0 ) = ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ) |
| 17 | 3 16 | eqtrid | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 = ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ) |
| 18 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 19 | 18 | ringmgp | ⊢ ( 𝑆 ∈ Ring → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
| 20 | eqid | ⊢ ( mulGrp ‘ 𝑇 ) = ( mulGrp ‘ 𝑇 ) | |
| 21 | 20 | ringmgp | ⊢ ( 𝑇 ∈ Ring → ( mulGrp ‘ 𝑇 ) ∈ Mnd ) |
| 22 | 4 21 | syl | ⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( mulGrp ‘ 𝑇 ) ∈ Mnd ) |
| 23 | 18 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
| 24 | 20 12 | ringidval | ⊢ ( 1r ‘ 𝑇 ) = ( 0g ‘ ( mulGrp ‘ 𝑇 ) ) |
| 25 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) | |
| 26 | 23 24 25 | c0mhm | ⊢ ( ( ( mulGrp ‘ 𝑆 ) ∈ Mnd ∧ ( mulGrp ‘ 𝑇 ) ∈ Mnd ) → ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
| 27 | 19 22 26 | syl2an | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
| 28 | 17 27 | eqeltrd | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
| 29 | 10 28 | jca | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐻 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) ) |
| 30 | 18 20 | isrhm | ⊢ ( 𝐻 ∈ ( 𝑆 RingHom 𝑇 ) ↔ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ Ring ) ∧ ( 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐻 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) ) ) |
| 31 | 5 29 30 | sylanbrc | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( 𝑆 RingHom 𝑇 ) ) |