This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zorn2 . (Contributed by NM, 3-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zorn2lem.3 | ⊢ 𝐹 = recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ) | |
| zorn2lem.4 | ⊢ 𝐶 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 } | ||
| zorn2lem.5 | ⊢ 𝐷 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } | ||
| Assertion | zorn2lem2 | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zorn2lem.3 | ⊢ 𝐹 = recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ) | |
| 2 | zorn2lem.4 | ⊢ 𝐶 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 } | |
| 3 | zorn2lem.5 | ⊢ 𝐷 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } | |
| 4 | 1 2 3 | zorn2lem1 | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ) |
| 5 | breq2 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → ( 𝑔 𝑅 𝑧 ↔ 𝑔 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) | |
| 6 | 5 | ralbidv | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → ( ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 ↔ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) |
| 7 | 6 3 | elrab2 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ∧ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) |
| 8 | 7 | simprbi | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 → ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 ( 𝐹 ‘ 𝑥 ) ) |
| 9 | 4 8 | syl | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 ( 𝐹 ‘ 𝑥 ) ) |
| 10 | 1 | tfr1 | ⊢ 𝐹 Fn On |
| 11 | onss | ⊢ ( 𝑥 ∈ On → 𝑥 ⊆ On ) | |
| 12 | fnfvima | ⊢ ( ( 𝐹 Fn On ∧ 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ 𝑥 ) ) | |
| 13 | 12 | 3expia | ⊢ ( ( 𝐹 Fn On ∧ 𝑥 ⊆ On ) → ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ 𝑥 ) ) ) |
| 14 | 10 11 13 | sylancr | ⊢ ( 𝑥 ∈ On → ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ 𝑥 ) ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ 𝑥 ) ) ) |
| 16 | breq1 | ⊢ ( 𝑔 = ( 𝐹 ‘ 𝑦 ) → ( 𝑔 𝑅 ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) | |
| 17 | 16 | rspccv | ⊢ ( ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 ( 𝐹 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) |
| 18 | 9 15 17 | sylsyld | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) |