This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zorn2 . (Contributed by NM, 4-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zorn2lem.3 | |- F = recs ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ) |
|
| zorn2lem.4 | |- C = { z e. A | A. g e. ran f g R z } |
||
| zorn2lem.5 | |- D = { z e. A | A. g e. ( F " x ) g R z } |
||
| zorn2lem.7 | |- H = { z e. A | A. g e. ( F " y ) g R z } |
||
| Assertion | zorn2lem6 | |- ( R Po A -> ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> R Or ( F " x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zorn2lem.3 | |- F = recs ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ) |
|
| 2 | zorn2lem.4 | |- C = { z e. A | A. g e. ran f g R z } |
|
| 3 | zorn2lem.5 | |- D = { z e. A | A. g e. ( F " x ) g R z } |
|
| 4 | zorn2lem.7 | |- H = { z e. A | A. g e. ( F " y ) g R z } |
|
| 5 | poss | |- ( ( F " x ) C_ A -> ( R Po A -> R Po ( F " x ) ) ) |
|
| 6 | 1 2 3 4 | zorn2lem5 | |- ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( F " x ) C_ A ) |
| 7 | 5 6 | syl11 | |- ( R Po A -> ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> R Po ( F " x ) ) ) |
| 8 | 1 | tfr1 | |- F Fn On |
| 9 | fnfun | |- ( F Fn On -> Fun F ) |
|
| 10 | fvelima | |- ( ( Fun F /\ s e. ( F " x ) ) -> E. b e. x ( F ` b ) = s ) |
|
| 11 | df-rex | |- ( E. b e. x ( F ` b ) = s <-> E. b ( b e. x /\ ( F ` b ) = s ) ) |
|
| 12 | 10 11 | sylib | |- ( ( Fun F /\ s e. ( F " x ) ) -> E. b ( b e. x /\ ( F ` b ) = s ) ) |
| 13 | 12 | ex | |- ( Fun F -> ( s e. ( F " x ) -> E. b ( b e. x /\ ( F ` b ) = s ) ) ) |
| 14 | fvelima | |- ( ( Fun F /\ r e. ( F " x ) ) -> E. a e. x ( F ` a ) = r ) |
|
| 15 | df-rex | |- ( E. a e. x ( F ` a ) = r <-> E. a ( a e. x /\ ( F ` a ) = r ) ) |
|
| 16 | 14 15 | sylib | |- ( ( Fun F /\ r e. ( F " x ) ) -> E. a ( a e. x /\ ( F ` a ) = r ) ) |
| 17 | 16 | ex | |- ( Fun F -> ( r e. ( F " x ) -> E. a ( a e. x /\ ( F ` a ) = r ) ) ) |
| 18 | 13 17 | anim12d | |- ( Fun F -> ( ( s e. ( F " x ) /\ r e. ( F " x ) ) -> ( E. b ( b e. x /\ ( F ` b ) = s ) /\ E. a ( a e. x /\ ( F ` a ) = r ) ) ) ) |
| 19 | 8 9 18 | mp2b | |- ( ( s e. ( F " x ) /\ r e. ( F " x ) ) -> ( E. b ( b e. x /\ ( F ` b ) = s ) /\ E. a ( a e. x /\ ( F ` a ) = r ) ) ) |
| 20 | an4 | |- ( ( ( b e. x /\ a e. x ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) <-> ( ( b e. x /\ ( F ` b ) = s ) /\ ( a e. x /\ ( F ` a ) = r ) ) ) |
|
| 21 | 20 | 2exbii | |- ( E. b E. a ( ( b e. x /\ a e. x ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) <-> E. b E. a ( ( b e. x /\ ( F ` b ) = s ) /\ ( a e. x /\ ( F ` a ) = r ) ) ) |
| 22 | exdistrv | |- ( E. b E. a ( ( b e. x /\ ( F ` b ) = s ) /\ ( a e. x /\ ( F ` a ) = r ) ) <-> ( E. b ( b e. x /\ ( F ` b ) = s ) /\ E. a ( a e. x /\ ( F ` a ) = r ) ) ) |
|
| 23 | 21 22 | bitri | |- ( E. b E. a ( ( b e. x /\ a e. x ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) <-> ( E. b ( b e. x /\ ( F ` b ) = s ) /\ E. a ( a e. x /\ ( F ` a ) = r ) ) ) |
| 24 | 19 23 | sylibr | |- ( ( s e. ( F " x ) /\ r e. ( F " x ) ) -> E. b E. a ( ( b e. x /\ a e. x ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) ) |
| 25 | 4 | neeq1i | |- ( H =/= (/) <-> { z e. A | A. g e. ( F " y ) g R z } =/= (/) ) |
| 26 | 25 | ralbii | |- ( A. y e. x H =/= (/) <-> A. y e. x { z e. A | A. g e. ( F " y ) g R z } =/= (/) ) |
| 27 | imaeq2 | |- ( y = b -> ( F " y ) = ( F " b ) ) |
|
| 28 | 27 | raleqdv | |- ( y = b -> ( A. g e. ( F " y ) g R z <-> A. g e. ( F " b ) g R z ) ) |
| 29 | 28 | rabbidv | |- ( y = b -> { z e. A | A. g e. ( F " y ) g R z } = { z e. A | A. g e. ( F " b ) g R z } ) |
| 30 | 29 | neeq1d | |- ( y = b -> ( { z e. A | A. g e. ( F " y ) g R z } =/= (/) <-> { z e. A | A. g e. ( F " b ) g R z } =/= (/) ) ) |
| 31 | 30 | rspccv | |- ( A. y e. x { z e. A | A. g e. ( F " y ) g R z } =/= (/) -> ( b e. x -> { z e. A | A. g e. ( F " b ) g R z } =/= (/) ) ) |
| 32 | imaeq2 | |- ( y = a -> ( F " y ) = ( F " a ) ) |
|
| 33 | 32 | raleqdv | |- ( y = a -> ( A. g e. ( F " y ) g R z <-> A. g e. ( F " a ) g R z ) ) |
| 34 | 33 | rabbidv | |- ( y = a -> { z e. A | A. g e. ( F " y ) g R z } = { z e. A | A. g e. ( F " a ) g R z } ) |
| 35 | 34 | neeq1d | |- ( y = a -> ( { z e. A | A. g e. ( F " y ) g R z } =/= (/) <-> { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) |
| 36 | 35 | rspccv | |- ( A. y e. x { z e. A | A. g e. ( F " y ) g R z } =/= (/) -> ( a e. x -> { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) |
| 37 | 31 36 | anim12d | |- ( A. y e. x { z e. A | A. g e. ( F " y ) g R z } =/= (/) -> ( ( b e. x /\ a e. x ) -> ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) |
| 38 | 26 37 | sylbi | |- ( A. y e. x H =/= (/) -> ( ( b e. x /\ a e. x ) -> ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) |
| 39 | onelon | |- ( ( x e. On /\ b e. x ) -> b e. On ) |
|
| 40 | onelon | |- ( ( x e. On /\ a e. x ) -> a e. On ) |
|
| 41 | 39 40 | anim12dan | |- ( ( x e. On /\ ( b e. x /\ a e. x ) ) -> ( b e. On /\ a e. On ) ) |
| 42 | 41 | ex | |- ( x e. On -> ( ( b e. x /\ a e. x ) -> ( b e. On /\ a e. On ) ) ) |
| 43 | eloni | |- ( b e. On -> Ord b ) |
|
| 44 | eloni | |- ( a e. On -> Ord a ) |
|
| 45 | ordtri3or | |- ( ( Ord b /\ Ord a ) -> ( b e. a \/ b = a \/ a e. b ) ) |
|
| 46 | 43 44 45 | syl2an | |- ( ( b e. On /\ a e. On ) -> ( b e. a \/ b = a \/ a e. b ) ) |
| 47 | eqid | |- { z e. A | A. g e. ( F " a ) g R z } = { z e. A | A. g e. ( F " a ) g R z } |
|
| 48 | 1 2 47 | zorn2lem2 | |- ( ( a e. On /\ ( w We A /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( b e. a -> ( F ` b ) R ( F ` a ) ) ) |
| 49 | 48 | adantll | |- ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( b e. a -> ( F ` b ) R ( F ` a ) ) ) |
| 50 | breq12 | |- ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( ( F ` b ) R ( F ` a ) <-> s R r ) ) |
|
| 51 | 50 | biimpcd | |- ( ( F ` b ) R ( F ` a ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> s R r ) ) |
| 52 | 49 51 | syl6 | |- ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( b e. a -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> s R r ) ) ) |
| 53 | 52 | com23 | |- ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( b e. a -> s R r ) ) ) |
| 54 | 53 | adantrrl | |- ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( b e. a -> s R r ) ) ) |
| 55 | 54 | imp | |- ( ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) -> ( b e. a -> s R r ) ) |
| 56 | fveq2 | |- ( b = a -> ( F ` b ) = ( F ` a ) ) |
|
| 57 | eqeq12 | |- ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( ( F ` b ) = ( F ` a ) <-> s = r ) ) |
|
| 58 | 56 57 | imbitrid | |- ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( b = a -> s = r ) ) |
| 59 | 58 | adantl | |- ( ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) -> ( b = a -> s = r ) ) |
| 60 | eqid | |- { z e. A | A. g e. ( F " b ) g R z } = { z e. A | A. g e. ( F " b ) g R z } |
|
| 61 | 1 2 60 | zorn2lem2 | |- ( ( b e. On /\ ( w We A /\ { z e. A | A. g e. ( F " b ) g R z } =/= (/) ) ) -> ( a e. b -> ( F ` a ) R ( F ` b ) ) ) |
| 62 | 61 | adantlr | |- ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ { z e. A | A. g e. ( F " b ) g R z } =/= (/) ) ) -> ( a e. b -> ( F ` a ) R ( F ` b ) ) ) |
| 63 | breq12 | |- ( ( ( F ` a ) = r /\ ( F ` b ) = s ) -> ( ( F ` a ) R ( F ` b ) <-> r R s ) ) |
|
| 64 | 63 | ancoms | |- ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( ( F ` a ) R ( F ` b ) <-> r R s ) ) |
| 65 | 64 | biimpcd | |- ( ( F ` a ) R ( F ` b ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> r R s ) ) |
| 66 | 62 65 | syl6 | |- ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ { z e. A | A. g e. ( F " b ) g R z } =/= (/) ) ) -> ( a e. b -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> r R s ) ) ) |
| 67 | 66 | com23 | |- ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ { z e. A | A. g e. ( F " b ) g R z } =/= (/) ) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( a e. b -> r R s ) ) ) |
| 68 | 67 | adantrrr | |- ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( a e. b -> r R s ) ) ) |
| 69 | 68 | imp | |- ( ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) -> ( a e. b -> r R s ) ) |
| 70 | 55 59 69 | 3orim123d | |- ( ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) -> ( ( b e. a \/ b = a \/ a e. b ) -> ( s R r \/ s = r \/ r R s ) ) ) |
| 71 | 46 70 | syl5 | |- ( ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) -> ( ( b e. On /\ a e. On ) -> ( s R r \/ s = r \/ r R s ) ) ) |
| 72 | 71 | exp31 | |- ( ( b e. On /\ a e. On ) -> ( ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( ( b e. On /\ a e. On ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) |
| 73 | 72 | com4r | |- ( ( b e. On /\ a e. On ) -> ( ( b e. On /\ a e. On ) -> ( ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) |
| 74 | 42 42 73 | syl6c | |- ( x e. On -> ( ( b e. x /\ a e. x ) -> ( ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) |
| 75 | 74 | exp4a | |- ( x e. On -> ( ( b e. x /\ a e. x ) -> ( w We A -> ( ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) ) |
| 76 | 75 | com3r | |- ( w We A -> ( x e. On -> ( ( b e. x /\ a e. x ) -> ( ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) ) |
| 77 | 76 | imp | |- ( ( w We A /\ x e. On ) -> ( ( b e. x /\ a e. x ) -> ( ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) |
| 78 | 77 | a2d | |- ( ( w We A /\ x e. On ) -> ( ( ( b e. x /\ a e. x ) -> ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( ( b e. x /\ a e. x ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) |
| 79 | 38 78 | syl5 | |- ( ( w We A /\ x e. On ) -> ( A. y e. x H =/= (/) -> ( ( b e. x /\ a e. x ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) |
| 80 | 79 | imp4b | |- ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( ( ( b e. x /\ a e. x ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) -> ( s R r \/ s = r \/ r R s ) ) ) |
| 81 | 80 | exlimdvv | |- ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( E. b E. a ( ( b e. x /\ a e. x ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) -> ( s R r \/ s = r \/ r R s ) ) ) |
| 82 | 24 81 | syl5 | |- ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( ( s e. ( F " x ) /\ r e. ( F " x ) ) -> ( s R r \/ s = r \/ r R s ) ) ) |
| 83 | 82 | ralrimivv | |- ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> A. s e. ( F " x ) A. r e. ( F " x ) ( s R r \/ s = r \/ r R s ) ) |
| 84 | 7 83 | jca2 | |- ( R Po A -> ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( R Po ( F " x ) /\ A. s e. ( F " x ) A. r e. ( F " x ) ( s R r \/ s = r \/ r R s ) ) ) ) |
| 85 | df-so | |- ( R Or ( F " x ) <-> ( R Po ( F " x ) /\ A. s e. ( F " x ) A. r e. ( F " x ) ( s R r \/ s = r \/ r R s ) ) ) |
|
| 86 | 84 85 | imbitrrdi | |- ( R Po A -> ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> R Or ( F " x ) ) ) |