This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zorn2 . (Contributed by NM, 3-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zorn2lem.3 | ⊢ 𝐹 = recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ) | |
| zorn2lem.4 | ⊢ 𝐶 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 } | ||
| zorn2lem.5 | ⊢ 𝐷 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } | ||
| Assertion | zorn2lem1 | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zorn2lem.3 | ⊢ 𝐹 = recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ) | |
| 2 | zorn2lem.4 | ⊢ 𝐶 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 } | |
| 3 | zorn2lem.5 | ⊢ 𝐷 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } | |
| 4 | 1 | tfr2 | ⊢ ( 𝑥 ∈ On → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 6 | 1 | tfr1 | ⊢ 𝐹 Fn On |
| 7 | fnfun | ⊢ ( 𝐹 Fn On → Fun 𝐹 ) | |
| 8 | 6 7 | ax-mp | ⊢ Fun 𝐹 |
| 9 | vex | ⊢ 𝑥 ∈ V | |
| 10 | resfunexg | ⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ V ) → ( 𝐹 ↾ 𝑥 ) ∈ V ) | |
| 11 | 8 9 10 | mp2an | ⊢ ( 𝐹 ↾ 𝑥 ) ∈ V |
| 12 | rneq | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ran 𝑓 = ran ( 𝐹 ↾ 𝑥 ) ) | |
| 13 | df-ima | ⊢ ( 𝐹 “ 𝑥 ) = ran ( 𝐹 ↾ 𝑥 ) | |
| 14 | 12 13 | eqtr4di | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ran 𝑓 = ( 𝐹 “ 𝑥 ) ) |
| 15 | 14 | eleq2d | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( 𝑔 ∈ ran 𝑓 ↔ 𝑔 ∈ ( 𝐹 “ 𝑥 ) ) ) |
| 16 | 15 | imbi1d | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( ( 𝑔 ∈ ran 𝑓 → 𝑔 𝑅 𝑧 ) ↔ ( 𝑔 ∈ ( 𝐹 “ 𝑥 ) → 𝑔 𝑅 𝑧 ) ) ) |
| 17 | 16 | ralbidv2 | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 ↔ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 ) ) |
| 18 | 17 | rabbidv | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 } = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } ) |
| 19 | 18 2 3 | 3eqtr4g | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → 𝐶 = 𝐷 ) |
| 20 | 19 | eleq2d | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( 𝑢 ∈ 𝐶 ↔ 𝑢 ∈ 𝐷 ) ) |
| 21 | 20 | imbi1d | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( ( 𝑢 ∈ 𝐶 → ¬ 𝑢 𝑤 𝑣 ) ↔ ( 𝑢 ∈ 𝐷 → ¬ 𝑢 𝑤 𝑣 ) ) ) |
| 22 | 21 | ralbidv2 | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ↔ ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 ) ) |
| 23 | 19 22 | riotaeqbidv | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) = ( ℩ 𝑣 ∈ 𝐷 ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 ) ) |
| 24 | eqid | ⊢ ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) = ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) | |
| 25 | riotaex | ⊢ ( ℩ 𝑣 ∈ 𝐷 ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 ) ∈ V | |
| 26 | 23 24 25 | fvmpt | ⊢ ( ( 𝐹 ↾ 𝑥 ) ∈ V → ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ‘ ( 𝐹 ↾ 𝑥 ) ) = ( ℩ 𝑣 ∈ 𝐷 ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 ) ) |
| 27 | 11 26 | ax-mp | ⊢ ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ‘ ( 𝐹 ↾ 𝑥 ) ) = ( ℩ 𝑣 ∈ 𝐷 ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 ) |
| 28 | 5 27 | eqtrdi | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ( 𝐹 ‘ 𝑥 ) = ( ℩ 𝑣 ∈ 𝐷 ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 ) ) |
| 29 | simprl | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → 𝑤 We 𝐴 ) | |
| 30 | weso | ⊢ ( 𝑤 We 𝐴 → 𝑤 Or 𝐴 ) | |
| 31 | 30 | ad2antrl | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → 𝑤 Or 𝐴 ) |
| 32 | vex | ⊢ 𝑤 ∈ V | |
| 33 | soex | ⊢ ( ( 𝑤 Or 𝐴 ∧ 𝑤 ∈ V ) → 𝐴 ∈ V ) | |
| 34 | 31 32 33 | sylancl | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → 𝐴 ∈ V ) |
| 35 | 3 34 | rabexd | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → 𝐷 ∈ V ) |
| 36 | 3 | ssrab3 | ⊢ 𝐷 ⊆ 𝐴 |
| 37 | 36 | a1i | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → 𝐷 ⊆ 𝐴 ) |
| 38 | simprr | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → 𝐷 ≠ ∅ ) | |
| 39 | wereu | ⊢ ( ( 𝑤 We 𝐴 ∧ ( 𝐷 ∈ V ∧ 𝐷 ⊆ 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ∃! 𝑣 ∈ 𝐷 ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 ) | |
| 40 | 29 35 37 38 39 | syl13anc | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ∃! 𝑣 ∈ 𝐷 ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 ) |
| 41 | riotacl | ⊢ ( ∃! 𝑣 ∈ 𝐷 ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 → ( ℩ 𝑣 ∈ 𝐷 ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 ) ∈ 𝐷 ) | |
| 42 | 40 41 | syl | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ( ℩ 𝑣 ∈ 𝐷 ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 ) ∈ 𝐷 ) |
| 43 | 28 42 | eqeltrd | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ) |