This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the relation in a strict order is a set, then the base field is also a set. (Contributed by Mario Carneiro, 27-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | soex | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) → 𝐴 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) ∧ 𝐴 = ∅ ) → 𝐴 = ∅ ) | |
| 2 | 0ex | ⊢ ∅ ∈ V | |
| 3 | 1 2 | eqeltrdi | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) ∧ 𝐴 = ∅ ) → 𝐴 ∈ V ) |
| 4 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) | |
| 5 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 6 | dmexg | ⊢ ( 𝑅 ∈ 𝑉 → dom 𝑅 ∈ V ) | |
| 7 | rnexg | ⊢ ( 𝑅 ∈ 𝑉 → ran 𝑅 ∈ V ) | |
| 8 | unexg | ⊢ ( ( dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V ) → ( dom 𝑅 ∪ ran 𝑅 ) ∈ V ) | |
| 9 | 6 7 8 | syl2anc | ⊢ ( 𝑅 ∈ 𝑉 → ( dom 𝑅 ∪ ran 𝑅 ) ∈ V ) |
| 10 | unexg | ⊢ ( ( { 𝑥 } ∈ V ∧ ( dom 𝑅 ∪ ran 𝑅 ) ∈ V ) → ( { 𝑥 } ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V ) | |
| 11 | 5 9 10 | sylancr | ⊢ ( 𝑅 ∈ 𝑉 → ( { 𝑥 } ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V ) |
| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐴 ) → ( { 𝑥 } ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V ) |
| 13 | sossfld | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑥 } ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) | |
| 14 | 13 | adantlr | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑥 } ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 15 | ssundif | ⊢ ( 𝐴 ⊆ ( { 𝑥 } ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) ↔ ( 𝐴 ∖ { 𝑥 } ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) | |
| 16 | 14 15 | sylibr | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ ( { 𝑥 } ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 17 | 12 16 | ssexd | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ∈ V ) |
| 18 | 17 | ex | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐴 → 𝐴 ∈ V ) ) |
| 19 | 18 | exlimdv | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) → ( ∃ 𝑥 𝑥 ∈ 𝐴 → 𝐴 ∈ V ) ) |
| 20 | 19 | imp | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) ∧ ∃ 𝑥 𝑥 ∈ 𝐴 ) → 𝐴 ∈ V ) |
| 21 | 4 20 | sylan2b | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ V ) |
| 22 | 3 21 | pm2.61dane | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) → 𝐴 ∈ V ) |