This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zorn2 . (Contributed by NM, 3-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zorn2lem.3 | |- F = recs ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ) |
|
| zorn2lem.4 | |- C = { z e. A | A. g e. ran f g R z } |
||
| zorn2lem.5 | |- D = { z e. A | A. g e. ( F " x ) g R z } |
||
| Assertion | zorn2lem1 | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( F ` x ) e. D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zorn2lem.3 | |- F = recs ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ) |
|
| 2 | zorn2lem.4 | |- C = { z e. A | A. g e. ran f g R z } |
|
| 3 | zorn2lem.5 | |- D = { z e. A | A. g e. ( F " x ) g R z } |
|
| 4 | 1 | tfr2 | |- ( x e. On -> ( F ` x ) = ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ` ( F |` x ) ) ) |
| 5 | 4 | adantr | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( F ` x ) = ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ` ( F |` x ) ) ) |
| 6 | 1 | tfr1 | |- F Fn On |
| 7 | fnfun | |- ( F Fn On -> Fun F ) |
|
| 8 | 6 7 | ax-mp | |- Fun F |
| 9 | vex | |- x e. _V |
|
| 10 | resfunexg | |- ( ( Fun F /\ x e. _V ) -> ( F |` x ) e. _V ) |
|
| 11 | 8 9 10 | mp2an | |- ( F |` x ) e. _V |
| 12 | rneq | |- ( f = ( F |` x ) -> ran f = ran ( F |` x ) ) |
|
| 13 | df-ima | |- ( F " x ) = ran ( F |` x ) |
|
| 14 | 12 13 | eqtr4di | |- ( f = ( F |` x ) -> ran f = ( F " x ) ) |
| 15 | 14 | eleq2d | |- ( f = ( F |` x ) -> ( g e. ran f <-> g e. ( F " x ) ) ) |
| 16 | 15 | imbi1d | |- ( f = ( F |` x ) -> ( ( g e. ran f -> g R z ) <-> ( g e. ( F " x ) -> g R z ) ) ) |
| 17 | 16 | ralbidv2 | |- ( f = ( F |` x ) -> ( A. g e. ran f g R z <-> A. g e. ( F " x ) g R z ) ) |
| 18 | 17 | rabbidv | |- ( f = ( F |` x ) -> { z e. A | A. g e. ran f g R z } = { z e. A | A. g e. ( F " x ) g R z } ) |
| 19 | 18 2 3 | 3eqtr4g | |- ( f = ( F |` x ) -> C = D ) |
| 20 | 19 | eleq2d | |- ( f = ( F |` x ) -> ( u e. C <-> u e. D ) ) |
| 21 | 20 | imbi1d | |- ( f = ( F |` x ) -> ( ( u e. C -> -. u w v ) <-> ( u e. D -> -. u w v ) ) ) |
| 22 | 21 | ralbidv2 | |- ( f = ( F |` x ) -> ( A. u e. C -. u w v <-> A. u e. D -. u w v ) ) |
| 23 | 19 22 | riotaeqbidv | |- ( f = ( F |` x ) -> ( iota_ v e. C A. u e. C -. u w v ) = ( iota_ v e. D A. u e. D -. u w v ) ) |
| 24 | eqid | |- ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) = ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) |
|
| 25 | riotaex | |- ( iota_ v e. D A. u e. D -. u w v ) e. _V |
|
| 26 | 23 24 25 | fvmpt | |- ( ( F |` x ) e. _V -> ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ` ( F |` x ) ) = ( iota_ v e. D A. u e. D -. u w v ) ) |
| 27 | 11 26 | ax-mp | |- ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ` ( F |` x ) ) = ( iota_ v e. D A. u e. D -. u w v ) |
| 28 | 5 27 | eqtrdi | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( F ` x ) = ( iota_ v e. D A. u e. D -. u w v ) ) |
| 29 | simprl | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> w We A ) |
|
| 30 | weso | |- ( w We A -> w Or A ) |
|
| 31 | 30 | ad2antrl | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> w Or A ) |
| 32 | vex | |- w e. _V |
|
| 33 | soex | |- ( ( w Or A /\ w e. _V ) -> A e. _V ) |
|
| 34 | 31 32 33 | sylancl | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> A e. _V ) |
| 35 | 3 34 | rabexd | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> D e. _V ) |
| 36 | 3 | ssrab3 | |- D C_ A |
| 37 | 36 | a1i | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> D C_ A ) |
| 38 | simprr | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> D =/= (/) ) |
|
| 39 | wereu | |- ( ( w We A /\ ( D e. _V /\ D C_ A /\ D =/= (/) ) ) -> E! v e. D A. u e. D -. u w v ) |
|
| 40 | 29 35 37 38 39 | syl13anc | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> E! v e. D A. u e. D -. u w v ) |
| 41 | riotacl | |- ( E! v e. D A. u e. D -. u w v -> ( iota_ v e. D A. u e. D -. u w v ) e. D ) |
|
| 42 | 40 41 | syl | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( iota_ v e. D A. u e. D -. u w v ) e. D ) |
| 43 | 28 42 | eqeltrd | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( F ` x ) e. D ) |