This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ngtmnft | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 = -∞ ↔ ¬ -∞ < 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 2 | xrltnr | ⊢ ( -∞ ∈ ℝ* → ¬ -∞ < -∞ ) | |
| 3 | 1 2 | ax-mp | ⊢ ¬ -∞ < -∞ |
| 4 | breq2 | ⊢ ( 𝐴 = -∞ → ( -∞ < 𝐴 ↔ -∞ < -∞ ) ) | |
| 5 | 3 4 | mtbiri | ⊢ ( 𝐴 = -∞ → ¬ -∞ < 𝐴 ) |
| 6 | mnfle | ⊢ ( 𝐴 ∈ ℝ* → -∞ ≤ 𝐴 ) | |
| 7 | xrleloe | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( -∞ ≤ 𝐴 ↔ ( -∞ < 𝐴 ∨ -∞ = 𝐴 ) ) ) | |
| 8 | 1 7 | mpan | ⊢ ( 𝐴 ∈ ℝ* → ( -∞ ≤ 𝐴 ↔ ( -∞ < 𝐴 ∨ -∞ = 𝐴 ) ) ) |
| 9 | 6 8 | mpbid | ⊢ ( 𝐴 ∈ ℝ* → ( -∞ < 𝐴 ∨ -∞ = 𝐴 ) ) |
| 10 | 9 | ord | ⊢ ( 𝐴 ∈ ℝ* → ( ¬ -∞ < 𝐴 → -∞ = 𝐴 ) ) |
| 11 | eqcom | ⊢ ( -∞ = 𝐴 ↔ 𝐴 = -∞ ) | |
| 12 | 10 11 | imbitrdi | ⊢ ( 𝐴 ∈ ℝ* → ( ¬ -∞ < 𝐴 → 𝐴 = -∞ ) ) |
| 13 | 5 12 | impbid2 | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 = -∞ ↔ ¬ -∞ < 𝐴 ) ) |