This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering on the extended reals is not symmetric. (Contributed by NM, 15-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrltnsym | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> -. B < A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 2 | elxr | |- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
|
| 3 | ltnsym | |- ( ( A e. RR /\ B e. RR ) -> ( A < B -> -. B < A ) ) |
|
| 4 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 5 | pnfnlt | |- ( A e. RR* -> -. +oo < A ) |
|
| 6 | 4 5 | syl | |- ( A e. RR -> -. +oo < A ) |
| 7 | 6 | adantr | |- ( ( A e. RR /\ B = +oo ) -> -. +oo < A ) |
| 8 | breq1 | |- ( B = +oo -> ( B < A <-> +oo < A ) ) |
|
| 9 | 8 | adantl | |- ( ( A e. RR /\ B = +oo ) -> ( B < A <-> +oo < A ) ) |
| 10 | 7 9 | mtbird | |- ( ( A e. RR /\ B = +oo ) -> -. B < A ) |
| 11 | 10 | a1d | |- ( ( A e. RR /\ B = +oo ) -> ( A < B -> -. B < A ) ) |
| 12 | nltmnf | |- ( A e. RR* -> -. A < -oo ) |
|
| 13 | 4 12 | syl | |- ( A e. RR -> -. A < -oo ) |
| 14 | 13 | adantr | |- ( ( A e. RR /\ B = -oo ) -> -. A < -oo ) |
| 15 | breq2 | |- ( B = -oo -> ( A < B <-> A < -oo ) ) |
|
| 16 | 15 | adantl | |- ( ( A e. RR /\ B = -oo ) -> ( A < B <-> A < -oo ) ) |
| 17 | 14 16 | mtbird | |- ( ( A e. RR /\ B = -oo ) -> -. A < B ) |
| 18 | 17 | pm2.21d | |- ( ( A e. RR /\ B = -oo ) -> ( A < B -> -. B < A ) ) |
| 19 | 3 11 18 | 3jaodan | |- ( ( A e. RR /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( A < B -> -. B < A ) ) |
| 20 | pnfnlt | |- ( B e. RR* -> -. +oo < B ) |
|
| 21 | 20 | adantl | |- ( ( A = +oo /\ B e. RR* ) -> -. +oo < B ) |
| 22 | breq1 | |- ( A = +oo -> ( A < B <-> +oo < B ) ) |
|
| 23 | 22 | adantr | |- ( ( A = +oo /\ B e. RR* ) -> ( A < B <-> +oo < B ) ) |
| 24 | 21 23 | mtbird | |- ( ( A = +oo /\ B e. RR* ) -> -. A < B ) |
| 25 | 24 | pm2.21d | |- ( ( A = +oo /\ B e. RR* ) -> ( A < B -> -. B < A ) ) |
| 26 | 2 25 | sylan2br | |- ( ( A = +oo /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( A < B -> -. B < A ) ) |
| 27 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 28 | nltmnf | |- ( B e. RR* -> -. B < -oo ) |
|
| 29 | 27 28 | syl | |- ( B e. RR -> -. B < -oo ) |
| 30 | 29 | adantl | |- ( ( A = -oo /\ B e. RR ) -> -. B < -oo ) |
| 31 | breq2 | |- ( A = -oo -> ( B < A <-> B < -oo ) ) |
|
| 32 | 31 | adantr | |- ( ( A = -oo /\ B e. RR ) -> ( B < A <-> B < -oo ) ) |
| 33 | 30 32 | mtbird | |- ( ( A = -oo /\ B e. RR ) -> -. B < A ) |
| 34 | 33 | a1d | |- ( ( A = -oo /\ B e. RR ) -> ( A < B -> -. B < A ) ) |
| 35 | mnfxr | |- -oo e. RR* |
|
| 36 | pnfnlt | |- ( -oo e. RR* -> -. +oo < -oo ) |
|
| 37 | 35 36 | ax-mp | |- -. +oo < -oo |
| 38 | breq12 | |- ( ( B = +oo /\ A = -oo ) -> ( B < A <-> +oo < -oo ) ) |
|
| 39 | 37 38 | mtbiri | |- ( ( B = +oo /\ A = -oo ) -> -. B < A ) |
| 40 | 39 | ancoms | |- ( ( A = -oo /\ B = +oo ) -> -. B < A ) |
| 41 | 40 | a1d | |- ( ( A = -oo /\ B = +oo ) -> ( A < B -> -. B < A ) ) |
| 42 | xrltnr | |- ( -oo e. RR* -> -. -oo < -oo ) |
|
| 43 | 35 42 | ax-mp | |- -. -oo < -oo |
| 44 | breq12 | |- ( ( A = -oo /\ B = -oo ) -> ( A < B <-> -oo < -oo ) ) |
|
| 45 | 43 44 | mtbiri | |- ( ( A = -oo /\ B = -oo ) -> -. A < B ) |
| 46 | 45 | pm2.21d | |- ( ( A = -oo /\ B = -oo ) -> ( A < B -> -. B < A ) ) |
| 47 | 34 41 46 | 3jaodan | |- ( ( A = -oo /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( A < B -> -. B < A ) ) |
| 48 | 19 26 47 | 3jaoian | |- ( ( ( A e. RR \/ A = +oo \/ A = -oo ) /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( A < B -> -. B < A ) ) |
| 49 | 1 2 48 | syl2anb | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> -. B < A ) ) |