This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any subset of extended reals has an infimum. (Contributed by NM, 25-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrinfmss | ⊢ ( 𝐴 ⊆ ℝ* → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrinfmsslem | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ ( 𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴 ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) | |
| 2 | ssdifss | ⊢ ( 𝐴 ⊆ ℝ* → ( 𝐴 ∖ { +∞ } ) ⊆ ℝ* ) | |
| 3 | ssxr | ⊢ ( ( 𝐴 ∖ { +∞ } ) ⊆ ℝ* → ( ( 𝐴 ∖ { +∞ } ) ⊆ ℝ ∨ +∞ ∈ ( 𝐴 ∖ { +∞ } ) ∨ -∞ ∈ ( 𝐴 ∖ { +∞ } ) ) ) | |
| 4 | 3orass | ⊢ ( ( ( 𝐴 ∖ { +∞ } ) ⊆ ℝ ∨ +∞ ∈ ( 𝐴 ∖ { +∞ } ) ∨ -∞ ∈ ( 𝐴 ∖ { +∞ } ) ) ↔ ( ( 𝐴 ∖ { +∞ } ) ⊆ ℝ ∨ ( +∞ ∈ ( 𝐴 ∖ { +∞ } ) ∨ -∞ ∈ ( 𝐴 ∖ { +∞ } ) ) ) ) | |
| 5 | pnfex | ⊢ +∞ ∈ V | |
| 6 | 5 | snid | ⊢ +∞ ∈ { +∞ } |
| 7 | elndif | ⊢ ( +∞ ∈ { +∞ } → ¬ +∞ ∈ ( 𝐴 ∖ { +∞ } ) ) | |
| 8 | biorf | ⊢ ( ¬ +∞ ∈ ( 𝐴 ∖ { +∞ } ) → ( -∞ ∈ ( 𝐴 ∖ { +∞ } ) ↔ ( +∞ ∈ ( 𝐴 ∖ { +∞ } ) ∨ -∞ ∈ ( 𝐴 ∖ { +∞ } ) ) ) ) | |
| 9 | 6 7 8 | mp2b | ⊢ ( -∞ ∈ ( 𝐴 ∖ { +∞ } ) ↔ ( +∞ ∈ ( 𝐴 ∖ { +∞ } ) ∨ -∞ ∈ ( 𝐴 ∖ { +∞ } ) ) ) |
| 10 | 9 | orbi2i | ⊢ ( ( ( 𝐴 ∖ { +∞ } ) ⊆ ℝ ∨ -∞ ∈ ( 𝐴 ∖ { +∞ } ) ) ↔ ( ( 𝐴 ∖ { +∞ } ) ⊆ ℝ ∨ ( +∞ ∈ ( 𝐴 ∖ { +∞ } ) ∨ -∞ ∈ ( 𝐴 ∖ { +∞ } ) ) ) ) |
| 11 | 4 10 | bitr4i | ⊢ ( ( ( 𝐴 ∖ { +∞ } ) ⊆ ℝ ∨ +∞ ∈ ( 𝐴 ∖ { +∞ } ) ∨ -∞ ∈ ( 𝐴 ∖ { +∞ } ) ) ↔ ( ( 𝐴 ∖ { +∞ } ) ⊆ ℝ ∨ -∞ ∈ ( 𝐴 ∖ { +∞ } ) ) ) |
| 12 | 3 11 | sylib | ⊢ ( ( 𝐴 ∖ { +∞ } ) ⊆ ℝ* → ( ( 𝐴 ∖ { +∞ } ) ⊆ ℝ ∨ -∞ ∈ ( 𝐴 ∖ { +∞ } ) ) ) |
| 13 | xrinfmsslem | ⊢ ( ( ( 𝐴 ∖ { +∞ } ) ⊆ ℝ* ∧ ( ( 𝐴 ∖ { +∞ } ) ⊆ ℝ ∨ -∞ ∈ ( 𝐴 ∖ { +∞ } ) ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ( 𝐴 ∖ { +∞ } ) ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ( 𝐴 ∖ { +∞ } ) 𝑧 < 𝑦 ) ) ) | |
| 14 | 2 12 13 | syl2anc2 | ⊢ ( 𝐴 ⊆ ℝ* → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ( 𝐴 ∖ { +∞ } ) ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ( 𝐴 ∖ { +∞ } ) 𝑧 < 𝑦 ) ) ) |
| 15 | xrinfmexpnf | ⊢ ( ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ( 𝐴 ∖ { +∞ } ) ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ( 𝐴 ∖ { +∞ } ) 𝑧 < 𝑦 ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) 𝑧 < 𝑦 ) ) ) | |
| 16 | 5 | snss | ⊢ ( +∞ ∈ 𝐴 ↔ { +∞ } ⊆ 𝐴 ) |
| 17 | undif | ⊢ ( { +∞ } ⊆ 𝐴 ↔ ( { +∞ } ∪ ( 𝐴 ∖ { +∞ } ) ) = 𝐴 ) | |
| 18 | uncom | ⊢ ( { +∞ } ∪ ( 𝐴 ∖ { +∞ } ) ) = ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) | |
| 19 | 18 | eqeq1i | ⊢ ( ( { +∞ } ∪ ( 𝐴 ∖ { +∞ } ) ) = 𝐴 ↔ ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) = 𝐴 ) |
| 20 | 17 19 | bitri | ⊢ ( { +∞ } ⊆ 𝐴 ↔ ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) = 𝐴 ) |
| 21 | 16 20 | bitri | ⊢ ( +∞ ∈ 𝐴 ↔ ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) = 𝐴 ) |
| 22 | raleq | ⊢ ( ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) = 𝐴 → ( ∀ 𝑦 ∈ ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) ¬ 𝑦 < 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ) ) | |
| 23 | rexeq | ⊢ ( ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) = 𝐴 → ( ∃ 𝑧 ∈ ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) 𝑧 < 𝑦 ↔ ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) | |
| 24 | 23 | imbi2d | ⊢ ( ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) = 𝐴 → ( ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) 𝑧 < 𝑦 ) ↔ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 25 | 24 | ralbidv | ⊢ ( ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) = 𝐴 → ( ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) 𝑧 < 𝑦 ) ↔ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 26 | 22 25 | anbi12d | ⊢ ( ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) = 𝐴 → ( ( ∀ 𝑦 ∈ ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) 𝑧 < 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
| 27 | 21 26 | sylbi | ⊢ ( +∞ ∈ 𝐴 → ( ( ∀ 𝑦 ∈ ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) 𝑧 < 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
| 28 | 27 | rexbidv | ⊢ ( +∞ ∈ 𝐴 → ( ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) 𝑧 < 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
| 29 | 15 28 | imbitrid | ⊢ ( +∞ ∈ 𝐴 → ( ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ( 𝐴 ∖ { +∞ } ) ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ( 𝐴 ∖ { +∞ } ) 𝑧 < 𝑦 ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
| 30 | 14 29 | mpan9 | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 31 | ssxr | ⊢ ( 𝐴 ⊆ ℝ* → ( 𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ) | |
| 32 | df-3or | ⊢ ( ( 𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ↔ ( ( 𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ) ∨ -∞ ∈ 𝐴 ) ) | |
| 33 | or32 | ⊢ ( ( ( 𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ) ∨ -∞ ∈ 𝐴 ) ↔ ( ( 𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴 ) ∨ +∞ ∈ 𝐴 ) ) | |
| 34 | 32 33 | bitri | ⊢ ( ( 𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ↔ ( ( 𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴 ) ∨ +∞ ∈ 𝐴 ) ) |
| 35 | 31 34 | sylib | ⊢ ( 𝐴 ⊆ ℝ* → ( ( 𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴 ) ∨ +∞ ∈ 𝐴 ) ) |
| 36 | 1 30 35 | mpjaodan | ⊢ ( 𝐴 ⊆ ℝ* → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |