This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any subset of extended reals has an infimum. (Contributed by Mario Carneiro, 16-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrinfmss2 | ⊢ ( 𝐴 ⊆ ℝ* → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ◡ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrinfmss | ⊢ ( 𝐴 ⊆ ℝ* → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | 2 3 | brcnv | ⊢ ( 𝑥 ◡ < 𝑦 ↔ 𝑦 < 𝑥 ) |
| 5 | 4 | notbii | ⊢ ( ¬ 𝑥 ◡ < 𝑦 ↔ ¬ 𝑦 < 𝑥 ) |
| 6 | 5 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ◡ < 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ) |
| 7 | 3 2 | brcnv | ⊢ ( 𝑦 ◡ < 𝑥 ↔ 𝑥 < 𝑦 ) |
| 8 | vex | ⊢ 𝑧 ∈ V | |
| 9 | 3 8 | brcnv | ⊢ ( 𝑦 ◡ < 𝑧 ↔ 𝑧 < 𝑦 ) |
| 10 | 9 | rexbii | ⊢ ( ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) |
| 11 | 7 10 | imbi12i | ⊢ ( ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ↔ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 12 | 11 | ralbii | ⊢ ( ∀ 𝑦 ∈ ℝ* ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ↔ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 13 | 6 12 | anbi12i | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ◡ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 14 | 13 | rexbii | ⊢ ( ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ◡ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ) ↔ ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 15 | 1 14 | sylibr | ⊢ ( 𝐴 ⊆ ℝ* → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ◡ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ) ) |