This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding plus infinity to a set does not affect the existence of its infimum. (Contributed by NM, 19-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrinfmexpnf | ⊢ ( ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ( 𝐴 ∪ { +∞ } ) ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ( 𝐴 ∪ { +∞ } ) 𝑧 < 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun | ⊢ ( 𝑦 ∈ ( 𝐴 ∪ { +∞ } ) ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ { +∞ } ) ) | |
| 2 | simpr | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ) → ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ) | |
| 3 | velsn | ⊢ ( 𝑦 ∈ { +∞ } ↔ 𝑦 = +∞ ) | |
| 4 | pnfnlt | ⊢ ( 𝑥 ∈ ℝ* → ¬ +∞ < 𝑥 ) | |
| 5 | breq1 | ⊢ ( 𝑦 = +∞ → ( 𝑦 < 𝑥 ↔ +∞ < 𝑥 ) ) | |
| 6 | 5 | notbid | ⊢ ( 𝑦 = +∞ → ( ¬ 𝑦 < 𝑥 ↔ ¬ +∞ < 𝑥 ) ) |
| 7 | 4 6 | syl5ibrcom | ⊢ ( 𝑥 ∈ ℝ* → ( 𝑦 = +∞ → ¬ 𝑦 < 𝑥 ) ) |
| 8 | 3 7 | biimtrid | ⊢ ( 𝑥 ∈ ℝ* → ( 𝑦 ∈ { +∞ } → ¬ 𝑦 < 𝑥 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ) → ( 𝑦 ∈ { +∞ } → ¬ 𝑦 < 𝑥 ) ) |
| 10 | 2 9 | jaod | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ) → ( ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ { +∞ } ) → ¬ 𝑦 < 𝑥 ) ) |
| 11 | 1 10 | biimtrid | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ) → ( 𝑦 ∈ ( 𝐴 ∪ { +∞ } ) → ¬ 𝑦 < 𝑥 ) ) |
| 12 | 11 | ex | ⊢ ( 𝑥 ∈ ℝ* → ( ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) → ( 𝑦 ∈ ( 𝐴 ∪ { +∞ } ) → ¬ 𝑦 < 𝑥 ) ) ) |
| 13 | 12 | ralimdv2 | ⊢ ( 𝑥 ∈ ℝ* → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 → ∀ 𝑦 ∈ ( 𝐴 ∪ { +∞ } ) ¬ 𝑦 < 𝑥 ) ) |
| 14 | elun1 | ⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ∈ ( 𝐴 ∪ { +∞ } ) ) | |
| 15 | 14 | anim1i | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑧 < 𝑦 ) → ( 𝑧 ∈ ( 𝐴 ∪ { +∞ } ) ∧ 𝑧 < 𝑦 ) ) |
| 16 | 15 | reximi2 | ⊢ ( ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 → ∃ 𝑧 ∈ ( 𝐴 ∪ { +∞ } ) 𝑧 < 𝑦 ) |
| 17 | 16 | imim2i | ⊢ ( ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) → ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ( 𝐴 ∪ { +∞ } ) 𝑧 < 𝑦 ) ) |
| 18 | 17 | ralimi | ⊢ ( ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) → ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ( 𝐴 ∪ { +∞ } ) 𝑧 < 𝑦 ) ) |
| 19 | 13 18 | anim12d1 | ⊢ ( 𝑥 ∈ ℝ* → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( ∀ 𝑦 ∈ ( 𝐴 ∪ { +∞ } ) ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ( 𝐴 ∪ { +∞ } ) 𝑧 < 𝑦 ) ) ) ) |
| 20 | 19 | reximia | ⊢ ( ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ( 𝐴 ∪ { +∞ } ) ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ( 𝐴 ∪ { +∞ } ) 𝑧 < 𝑦 ) ) ) |