This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The three (non-exclusive) possibilities implied by a subset of extended reals. (Contributed by NM, 25-Oct-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssxr | ⊢ ( 𝐴 ⊆ ℝ* → ( 𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr | ⊢ { +∞ , -∞ } = ( { +∞ } ∪ { -∞ } ) | |
| 2 | 1 | ineq2i | ⊢ ( 𝐴 ∩ { +∞ , -∞ } ) = ( 𝐴 ∩ ( { +∞ } ∪ { -∞ } ) ) |
| 3 | indi | ⊢ ( 𝐴 ∩ ( { +∞ } ∪ { -∞ } ) ) = ( ( 𝐴 ∩ { +∞ } ) ∪ ( 𝐴 ∩ { -∞ } ) ) | |
| 4 | 2 3 | eqtri | ⊢ ( 𝐴 ∩ { +∞ , -∞ } ) = ( ( 𝐴 ∩ { +∞ } ) ∪ ( 𝐴 ∩ { -∞ } ) ) |
| 5 | disjsn | ⊢ ( ( 𝐴 ∩ { +∞ } ) = ∅ ↔ ¬ +∞ ∈ 𝐴 ) | |
| 6 | disjsn | ⊢ ( ( 𝐴 ∩ { -∞ } ) = ∅ ↔ ¬ -∞ ∈ 𝐴 ) | |
| 7 | 5 6 | anbi12i | ⊢ ( ( ( 𝐴 ∩ { +∞ } ) = ∅ ∧ ( 𝐴 ∩ { -∞ } ) = ∅ ) ↔ ( ¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴 ) ) |
| 8 | 7 | biimpri | ⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴 ) → ( ( 𝐴 ∩ { +∞ } ) = ∅ ∧ ( 𝐴 ∩ { -∞ } ) = ∅ ) ) |
| 9 | pm4.56 | ⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴 ) ↔ ¬ ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ) | |
| 10 | un00 | ⊢ ( ( ( 𝐴 ∩ { +∞ } ) = ∅ ∧ ( 𝐴 ∩ { -∞ } ) = ∅ ) ↔ ( ( 𝐴 ∩ { +∞ } ) ∪ ( 𝐴 ∩ { -∞ } ) ) = ∅ ) | |
| 11 | 8 9 10 | 3imtr3i | ⊢ ( ¬ ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) → ( ( 𝐴 ∩ { +∞ } ) ∪ ( 𝐴 ∩ { -∞ } ) ) = ∅ ) |
| 12 | 4 11 | eqtrid | ⊢ ( ¬ ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) → ( 𝐴 ∩ { +∞ , -∞ } ) = ∅ ) |
| 13 | reldisj | ⊢ ( 𝐴 ⊆ ( ℝ ∪ { +∞ , -∞ } ) → ( ( 𝐴 ∩ { +∞ , -∞ } ) = ∅ ↔ 𝐴 ⊆ ( ( ℝ ∪ { +∞ , -∞ } ) ∖ { +∞ , -∞ } ) ) ) | |
| 14 | renfdisj | ⊢ ( ℝ ∩ { +∞ , -∞ } ) = ∅ | |
| 15 | disj3 | ⊢ ( ( ℝ ∩ { +∞ , -∞ } ) = ∅ ↔ ℝ = ( ℝ ∖ { +∞ , -∞ } ) ) | |
| 16 | 14 15 | mpbi | ⊢ ℝ = ( ℝ ∖ { +∞ , -∞ } ) |
| 17 | difun2 | ⊢ ( ( ℝ ∪ { +∞ , -∞ } ) ∖ { +∞ , -∞ } ) = ( ℝ ∖ { +∞ , -∞ } ) | |
| 18 | 16 17 | eqtr4i | ⊢ ℝ = ( ( ℝ ∪ { +∞ , -∞ } ) ∖ { +∞ , -∞ } ) |
| 19 | 18 | sseq2i | ⊢ ( 𝐴 ⊆ ℝ ↔ 𝐴 ⊆ ( ( ℝ ∪ { +∞ , -∞ } ) ∖ { +∞ , -∞ } ) ) |
| 20 | 13 19 | bitr4di | ⊢ ( 𝐴 ⊆ ( ℝ ∪ { +∞ , -∞ } ) → ( ( 𝐴 ∩ { +∞ , -∞ } ) = ∅ ↔ 𝐴 ⊆ ℝ ) ) |
| 21 | 12 20 | imbitrid | ⊢ ( 𝐴 ⊆ ( ℝ ∪ { +∞ , -∞ } ) → ( ¬ ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) → 𝐴 ⊆ ℝ ) ) |
| 22 | 21 | orrd | ⊢ ( 𝐴 ⊆ ( ℝ ∪ { +∞ , -∞ } ) → ( ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ∨ 𝐴 ⊆ ℝ ) ) |
| 23 | df-xr | ⊢ ℝ* = ( ℝ ∪ { +∞ , -∞ } ) | |
| 24 | 23 | sseq2i | ⊢ ( 𝐴 ⊆ ℝ* ↔ 𝐴 ⊆ ( ℝ ∪ { +∞ , -∞ } ) ) |
| 25 | 3orrot | ⊢ ( ( 𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ↔ ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ∨ 𝐴 ⊆ ℝ ) ) | |
| 26 | df-3or | ⊢ ( ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ∨ 𝐴 ⊆ ℝ ) ↔ ( ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ∨ 𝐴 ⊆ ℝ ) ) | |
| 27 | 25 26 | bitri | ⊢ ( ( 𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ↔ ( ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ∨ 𝐴 ⊆ ℝ ) ) |
| 28 | 22 24 27 | 3imtr4i | ⊢ ( 𝐴 ⊆ ℝ* → ( 𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ) |