This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplicative identity element of a binary product of rings. (Contributed by AV, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpsringd.y | ⊢ 𝑌 = ( 𝑆 ×s 𝑅 ) | |
| xpsringd.s | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) | ||
| xpsringd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| Assertion | xpsring1d | ⊢ ( 𝜑 → ( 1r ‘ 𝑌 ) = 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsringd.y | ⊢ 𝑌 = ( 𝑆 ×s 𝑅 ) | |
| 2 | xpsringd.s | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) | |
| 3 | xpsringd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 4 | eqid | ⊢ ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 6 | 4 5 | mgpbas | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) |
| 7 | eqid | ⊢ ( 1r ‘ 𝑌 ) = ( 1r ‘ 𝑌 ) | |
| 8 | 4 7 | ringidval | ⊢ ( 1r ‘ 𝑌 ) = ( 0g ‘ ( mulGrp ‘ 𝑌 ) ) |
| 9 | eqid | ⊢ ( .r ‘ 𝑌 ) = ( .r ‘ 𝑌 ) | |
| 10 | 4 9 | mgpplusg | ⊢ ( .r ‘ 𝑌 ) = ( +g ‘ ( mulGrp ‘ 𝑌 ) ) |
| 11 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 12 | eqid | ⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) | |
| 13 | 11 12 | ringidcl | ⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 14 | 2 13 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 15 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 16 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 17 | 15 16 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 18 | 3 17 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 19 | 14 18 | opelxpd | ⊢ ( 𝜑 → 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ∈ ( ( Base ‘ 𝑆 ) × ( Base ‘ 𝑅 ) ) ) |
| 20 | 1 11 15 2 3 | xpsbas | ⊢ ( 𝜑 → ( ( Base ‘ 𝑆 ) × ( Base ‘ 𝑅 ) ) = ( Base ‘ 𝑌 ) ) |
| 21 | 19 20 | eleqtrd | ⊢ ( 𝜑 → 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ∈ ( Base ‘ 𝑌 ) ) |
| 22 | 20 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( Base ‘ 𝑆 ) × ( Base ‘ 𝑅 ) ) ↔ 𝑥 ∈ ( Base ‘ 𝑌 ) ) ) |
| 23 | elxp2 | ⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑆 ) × ( Base ‘ 𝑅 ) ) ↔ ∃ 𝑎 ∈ ( Base ‘ 𝑆 ) ∃ 𝑏 ∈ ( Base ‘ 𝑅 ) 𝑥 = 〈 𝑎 , 𝑏 〉 ) | |
| 24 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑆 ∈ Ring ) |
| 25 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑅 ∈ Ring ) |
| 26 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 27 | 18 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 28 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) | |
| 29 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) | |
| 30 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 31 | 11 30 24 26 28 | ringcld | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) 𝑎 ) ∈ ( Base ‘ 𝑆 ) ) |
| 32 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 33 | 15 32 25 27 29 | ringcld | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
| 34 | 1 11 15 24 25 26 27 28 29 31 33 30 32 9 | xpsmul | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 〈 𝑎 , 𝑏 〉 ) = 〈 ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) 𝑎 ) , ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑏 ) 〉 ) |
| 35 | simpl | ⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) | |
| 36 | 11 30 12 | ringlidm | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑎 ∈ ( Base ‘ 𝑆 ) ) → ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) 𝑎 ) = 𝑎 ) |
| 37 | 2 35 36 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) 𝑎 ) = 𝑎 ) |
| 38 | simpr | ⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) | |
| 39 | 15 32 16 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑏 ) = 𝑏 ) |
| 40 | 3 38 39 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑏 ) = 𝑏 ) |
| 41 | 37 40 | opeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → 〈 ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) 𝑎 ) , ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑏 ) 〉 = 〈 𝑎 , 𝑏 〉 ) |
| 42 | 34 41 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 〈 𝑎 , 𝑏 〉 ) = 〈 𝑎 , 𝑏 〉 ) |
| 43 | oveq2 | ⊢ ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 𝑥 ) = ( 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 〈 𝑎 , 𝑏 〉 ) ) | |
| 44 | id | ⊢ ( 𝑥 = 〈 𝑎 , 𝑏 〉 → 𝑥 = 〈 𝑎 , 𝑏 〉 ) | |
| 45 | 43 44 | eqeq12d | ⊢ ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( ( 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 𝑥 ) = 𝑥 ↔ ( 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 〈 𝑎 , 𝑏 〉 ) = 〈 𝑎 , 𝑏 〉 ) ) |
| 46 | 42 45 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 𝑥 ) = 𝑥 ) ) |
| 47 | 46 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( Base ‘ 𝑆 ) ∃ 𝑏 ∈ ( Base ‘ 𝑅 ) 𝑥 = 〈 𝑎 , 𝑏 〉 → ( 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 𝑥 ) = 𝑥 ) ) |
| 48 | 23 47 | biimtrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( Base ‘ 𝑆 ) × ( Base ‘ 𝑅 ) ) → ( 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 𝑥 ) = 𝑥 ) ) |
| 49 | 22 48 | sylbird | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑌 ) → ( 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 𝑥 ) = 𝑥 ) ) |
| 50 | 49 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑌 ) ) → ( 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 𝑥 ) = 𝑥 ) |
| 51 | 11 30 24 28 26 | ringcld | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑎 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 52 | 15 32 25 29 27 | ringcld | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑏 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 53 | 1 11 15 24 25 28 29 26 27 51 52 30 32 9 | xpsmul | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 〈 𝑎 , 𝑏 〉 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ) = 〈 ( 𝑎 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) , ( 𝑏 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) 〉 ) |
| 54 | 11 30 12 | ringridm | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑎 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑎 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) = 𝑎 ) |
| 55 | 2 35 54 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑎 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) = 𝑎 ) |
| 56 | 15 32 16 | ringridm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑏 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑏 ) |
| 57 | 3 38 56 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑏 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑏 ) |
| 58 | 55 57 | opeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → 〈 ( 𝑎 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) , ( 𝑏 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) 〉 = 〈 𝑎 , 𝑏 〉 ) |
| 59 | 53 58 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 〈 𝑎 , 𝑏 〉 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ) = 〈 𝑎 , 𝑏 〉 ) |
| 60 | oveq1 | ⊢ ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( 𝑥 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ) = ( 〈 𝑎 , 𝑏 〉 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ) ) | |
| 61 | 60 44 | eqeq12d | ⊢ ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( ( 𝑥 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ) = 𝑥 ↔ ( 〈 𝑎 , 𝑏 〉 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ) = 〈 𝑎 , 𝑏 〉 ) ) |
| 62 | 59 61 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( 𝑥 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ) = 𝑥 ) ) |
| 63 | 62 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( Base ‘ 𝑆 ) ∃ 𝑏 ∈ ( Base ‘ 𝑅 ) 𝑥 = 〈 𝑎 , 𝑏 〉 → ( 𝑥 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ) = 𝑥 ) ) |
| 64 | 23 63 | biimtrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( Base ‘ 𝑆 ) × ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ) = 𝑥 ) ) |
| 65 | 22 64 | sylbird | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑌 ) → ( 𝑥 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ) = 𝑥 ) ) |
| 66 | 65 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑥 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ) = 𝑥 ) |
| 67 | 6 8 10 21 50 66 | ismgmid2 | ⊢ ( 𝜑 → 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 = ( 1r ‘ 𝑌 ) ) |
| 68 | 67 | eqcomd | ⊢ ( 𝜑 → ( 1r ‘ 𝑌 ) = 〈 ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) 〉 ) |