This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismgmid.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ismgmid.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| ismgmid.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| ismgmid2.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝐵 ) | ||
| ismgmid2.l | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑈 + 𝑥 ) = 𝑥 ) | ||
| ismgmid2.r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 𝑈 ) = 𝑥 ) | ||
| Assertion | ismgmid2 | ⊢ ( 𝜑 → 𝑈 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismgmid.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ismgmid.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | ismgmid.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | ismgmid2.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝐵 ) | |
| 5 | ismgmid2.l | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑈 + 𝑥 ) = 𝑥 ) | |
| 6 | ismgmid2.r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 𝑈 ) = 𝑥 ) | |
| 7 | 5 6 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑈 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑈 ) = 𝑥 ) ) |
| 8 | 7 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ( 𝑈 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑈 ) = 𝑥 ) ) |
| 9 | oveq1 | ⊢ ( 𝑒 = 𝑈 → ( 𝑒 + 𝑥 ) = ( 𝑈 + 𝑥 ) ) | |
| 10 | 9 | eqeq1d | ⊢ ( 𝑒 = 𝑈 → ( ( 𝑒 + 𝑥 ) = 𝑥 ↔ ( 𝑈 + 𝑥 ) = 𝑥 ) ) |
| 11 | 10 | ovanraleqv | ⊢ ( 𝑒 = 𝑈 → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( 𝑈 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑈 ) = 𝑥 ) ) ) |
| 12 | 11 | rspcev | ⊢ ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑈 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑈 ) = 𝑥 ) ) → ∃ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) |
| 13 | 4 8 12 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) |
| 14 | 1 2 3 13 | ismgmid | ⊢ ( 𝜑 → ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑈 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑈 ) = 𝑥 ) ) ↔ 0 = 𝑈 ) ) |
| 15 | 4 8 14 | mpbi2and | ⊢ ( 𝜑 → 0 = 𝑈 ) |
| 16 | 15 | eqcomd | ⊢ ( 𝜑 → 𝑈 = 0 ) |