This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplicative identity element of a binary product of rings. (Contributed by AV, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpsringd.y | |- Y = ( S Xs. R ) |
|
| xpsringd.s | |- ( ph -> S e. Ring ) |
||
| xpsringd.r | |- ( ph -> R e. Ring ) |
||
| Assertion | xpsring1d | |- ( ph -> ( 1r ` Y ) = <. ( 1r ` S ) , ( 1r ` R ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsringd.y | |- Y = ( S Xs. R ) |
|
| 2 | xpsringd.s | |- ( ph -> S e. Ring ) |
|
| 3 | xpsringd.r | |- ( ph -> R e. Ring ) |
|
| 4 | eqid | |- ( mulGrp ` Y ) = ( mulGrp ` Y ) |
|
| 5 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 6 | 4 5 | mgpbas | |- ( Base ` Y ) = ( Base ` ( mulGrp ` Y ) ) |
| 7 | eqid | |- ( 1r ` Y ) = ( 1r ` Y ) |
|
| 8 | 4 7 | ringidval | |- ( 1r ` Y ) = ( 0g ` ( mulGrp ` Y ) ) |
| 9 | eqid | |- ( .r ` Y ) = ( .r ` Y ) |
|
| 10 | 4 9 | mgpplusg | |- ( .r ` Y ) = ( +g ` ( mulGrp ` Y ) ) |
| 11 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 12 | eqid | |- ( 1r ` S ) = ( 1r ` S ) |
|
| 13 | 11 12 | ringidcl | |- ( S e. Ring -> ( 1r ` S ) e. ( Base ` S ) ) |
| 14 | 2 13 | syl | |- ( ph -> ( 1r ` S ) e. ( Base ` S ) ) |
| 15 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 16 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 17 | 15 16 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 18 | 3 17 | syl | |- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
| 19 | 14 18 | opelxpd | |- ( ph -> <. ( 1r ` S ) , ( 1r ` R ) >. e. ( ( Base ` S ) X. ( Base ` R ) ) ) |
| 20 | 1 11 15 2 3 | xpsbas | |- ( ph -> ( ( Base ` S ) X. ( Base ` R ) ) = ( Base ` Y ) ) |
| 21 | 19 20 | eleqtrd | |- ( ph -> <. ( 1r ` S ) , ( 1r ` R ) >. e. ( Base ` Y ) ) |
| 22 | 20 | eleq2d | |- ( ph -> ( x e. ( ( Base ` S ) X. ( Base ` R ) ) <-> x e. ( Base ` Y ) ) ) |
| 23 | elxp2 | |- ( x e. ( ( Base ` S ) X. ( Base ` R ) ) <-> E. a e. ( Base ` S ) E. b e. ( Base ` R ) x = <. a , b >. ) |
|
| 24 | 2 | adantr | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> S e. Ring ) |
| 25 | 3 | adantr | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> R e. Ring ) |
| 26 | 14 | adantr | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( 1r ` S ) e. ( Base ` S ) ) |
| 27 | 18 | adantr | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( 1r ` R ) e. ( Base ` R ) ) |
| 28 | simprl | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> a e. ( Base ` S ) ) |
|
| 29 | simprr | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> b e. ( Base ` R ) ) |
|
| 30 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 31 | 11 30 24 26 28 | ringcld | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( ( 1r ` S ) ( .r ` S ) a ) e. ( Base ` S ) ) |
| 32 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 33 | 15 32 25 27 29 | ringcld | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( ( 1r ` R ) ( .r ` R ) b ) e. ( Base ` R ) ) |
| 34 | 1 11 15 24 25 26 27 28 29 31 33 30 32 9 | xpsmul | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) <. a , b >. ) = <. ( ( 1r ` S ) ( .r ` S ) a ) , ( ( 1r ` R ) ( .r ` R ) b ) >. ) |
| 35 | simpl | |- ( ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) -> a e. ( Base ` S ) ) |
|
| 36 | 11 30 12 | ringlidm | |- ( ( S e. Ring /\ a e. ( Base ` S ) ) -> ( ( 1r ` S ) ( .r ` S ) a ) = a ) |
| 37 | 2 35 36 | syl2an | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( ( 1r ` S ) ( .r ` S ) a ) = a ) |
| 38 | simpr | |- ( ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) -> b e. ( Base ` R ) ) |
|
| 39 | 15 32 16 | ringlidm | |- ( ( R e. Ring /\ b e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) b ) = b ) |
| 40 | 3 38 39 | syl2an | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( ( 1r ` R ) ( .r ` R ) b ) = b ) |
| 41 | 37 40 | opeq12d | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> <. ( ( 1r ` S ) ( .r ` S ) a ) , ( ( 1r ` R ) ( .r ` R ) b ) >. = <. a , b >. ) |
| 42 | 34 41 | eqtrd | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) <. a , b >. ) = <. a , b >. ) |
| 43 | oveq2 | |- ( x = <. a , b >. -> ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) x ) = ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) <. a , b >. ) ) |
|
| 44 | id | |- ( x = <. a , b >. -> x = <. a , b >. ) |
|
| 45 | 43 44 | eqeq12d | |- ( x = <. a , b >. -> ( ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) x ) = x <-> ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) <. a , b >. ) = <. a , b >. ) ) |
| 46 | 42 45 | syl5ibrcom | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( x = <. a , b >. -> ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) x ) = x ) ) |
| 47 | 46 | rexlimdvva | |- ( ph -> ( E. a e. ( Base ` S ) E. b e. ( Base ` R ) x = <. a , b >. -> ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) x ) = x ) ) |
| 48 | 23 47 | biimtrid | |- ( ph -> ( x e. ( ( Base ` S ) X. ( Base ` R ) ) -> ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) x ) = x ) ) |
| 49 | 22 48 | sylbird | |- ( ph -> ( x e. ( Base ` Y ) -> ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) x ) = x ) ) |
| 50 | 49 | imp | |- ( ( ph /\ x e. ( Base ` Y ) ) -> ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) x ) = x ) |
| 51 | 11 30 24 28 26 | ringcld | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( a ( .r ` S ) ( 1r ` S ) ) e. ( Base ` S ) ) |
| 52 | 15 32 25 29 27 | ringcld | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( b ( .r ` R ) ( 1r ` R ) ) e. ( Base ` R ) ) |
| 53 | 1 11 15 24 25 28 29 26 27 51 52 30 32 9 | xpsmul | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( <. a , b >. ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) = <. ( a ( .r ` S ) ( 1r ` S ) ) , ( b ( .r ` R ) ( 1r ` R ) ) >. ) |
| 54 | 11 30 12 | ringridm | |- ( ( S e. Ring /\ a e. ( Base ` S ) ) -> ( a ( .r ` S ) ( 1r ` S ) ) = a ) |
| 55 | 2 35 54 | syl2an | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( a ( .r ` S ) ( 1r ` S ) ) = a ) |
| 56 | 15 32 16 | ringridm | |- ( ( R e. Ring /\ b e. ( Base ` R ) ) -> ( b ( .r ` R ) ( 1r ` R ) ) = b ) |
| 57 | 3 38 56 | syl2an | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( b ( .r ` R ) ( 1r ` R ) ) = b ) |
| 58 | 55 57 | opeq12d | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> <. ( a ( .r ` S ) ( 1r ` S ) ) , ( b ( .r ` R ) ( 1r ` R ) ) >. = <. a , b >. ) |
| 59 | 53 58 | eqtrd | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( <. a , b >. ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) = <. a , b >. ) |
| 60 | oveq1 | |- ( x = <. a , b >. -> ( x ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) = ( <. a , b >. ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) ) |
|
| 61 | 60 44 | eqeq12d | |- ( x = <. a , b >. -> ( ( x ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) = x <-> ( <. a , b >. ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) = <. a , b >. ) ) |
| 62 | 59 61 | syl5ibrcom | |- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( x = <. a , b >. -> ( x ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) = x ) ) |
| 63 | 62 | rexlimdvva | |- ( ph -> ( E. a e. ( Base ` S ) E. b e. ( Base ` R ) x = <. a , b >. -> ( x ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) = x ) ) |
| 64 | 23 63 | biimtrid | |- ( ph -> ( x e. ( ( Base ` S ) X. ( Base ` R ) ) -> ( x ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) = x ) ) |
| 65 | 22 64 | sylbird | |- ( ph -> ( x e. ( Base ` Y ) -> ( x ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) = x ) ) |
| 66 | 65 | imp | |- ( ( ph /\ x e. ( Base ` Y ) ) -> ( x ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) = x ) |
| 67 | 6 8 10 21 50 66 | ismgmid2 | |- ( ph -> <. ( 1r ` S ) , ( 1r ` R ) >. = ( 1r ` Y ) ) |
| 68 | 67 | eqcomd | |- ( ph -> ( 1r ` Y ) = <. ( 1r ` S ) , ( 1r ` R ) >. ) |