This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of Enderton p. 142. (Contributed by NM, 26-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpdjuen | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 × ( 𝐵 ⊔ 𝐶 ) ) ≈ ( ( 𝐴 × 𝐵 ) ⊔ ( 𝐴 × 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴 ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝐴 ≈ 𝐴 ) |
| 3 | 0ex | ⊢ ∅ ∈ V | |
| 4 | simp2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝐵 ∈ 𝑊 ) | |
| 5 | xpsnen2g | ⊢ ( ( ∅ ∈ V ∧ 𝐵 ∈ 𝑊 ) → ( { ∅ } × 𝐵 ) ≈ 𝐵 ) | |
| 6 | 3 4 5 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( { ∅ } × 𝐵 ) ≈ 𝐵 ) |
| 7 | 6 | ensymd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝐵 ≈ ( { ∅ } × 𝐵 ) ) |
| 8 | xpen | ⊢ ( ( 𝐴 ≈ 𝐴 ∧ 𝐵 ≈ ( { ∅ } × 𝐵 ) ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐴 × ( { ∅ } × 𝐵 ) ) ) | |
| 9 | 2 7 8 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐴 × ( { ∅ } × 𝐵 ) ) ) |
| 10 | 1on | ⊢ 1o ∈ On | |
| 11 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝐶 ∈ 𝑋 ) | |
| 12 | xpsnen2g | ⊢ ( ( 1o ∈ On ∧ 𝐶 ∈ 𝑋 ) → ( { 1o } × 𝐶 ) ≈ 𝐶 ) | |
| 13 | 10 11 12 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( { 1o } × 𝐶 ) ≈ 𝐶 ) |
| 14 | 13 | ensymd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝐶 ≈ ( { 1o } × 𝐶 ) ) |
| 15 | xpen | ⊢ ( ( 𝐴 ≈ 𝐴 ∧ 𝐶 ≈ ( { 1o } × 𝐶 ) ) → ( 𝐴 × 𝐶 ) ≈ ( 𝐴 × ( { 1o } × 𝐶 ) ) ) | |
| 16 | 2 14 15 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 × 𝐶 ) ≈ ( 𝐴 × ( { 1o } × 𝐶 ) ) ) |
| 17 | xp01disjl | ⊢ ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐶 ) ) = ∅ | |
| 18 | 17 | xpeq2i | ⊢ ( 𝐴 × ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐶 ) ) ) = ( 𝐴 × ∅ ) |
| 19 | xpindi | ⊢ ( 𝐴 × ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐶 ) ) ) = ( ( 𝐴 × ( { ∅ } × 𝐵 ) ) ∩ ( 𝐴 × ( { 1o } × 𝐶 ) ) ) | |
| 20 | xp0 | ⊢ ( 𝐴 × ∅ ) = ∅ | |
| 21 | 18 19 20 | 3eqtr3i | ⊢ ( ( 𝐴 × ( { ∅ } × 𝐵 ) ) ∩ ( 𝐴 × ( { 1o } × 𝐶 ) ) ) = ∅ |
| 22 | 21 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 × ( { ∅ } × 𝐵 ) ) ∩ ( 𝐴 × ( { 1o } × 𝐶 ) ) ) = ∅ ) |
| 23 | djuenun | ⊢ ( ( ( 𝐴 × 𝐵 ) ≈ ( 𝐴 × ( { ∅ } × 𝐵 ) ) ∧ ( 𝐴 × 𝐶 ) ≈ ( 𝐴 × ( { 1o } × 𝐶 ) ) ∧ ( ( 𝐴 × ( { ∅ } × 𝐵 ) ) ∩ ( 𝐴 × ( { 1o } × 𝐶 ) ) ) = ∅ ) → ( ( 𝐴 × 𝐵 ) ⊔ ( 𝐴 × 𝐶 ) ) ≈ ( ( 𝐴 × ( { ∅ } × 𝐵 ) ) ∪ ( 𝐴 × ( { 1o } × 𝐶 ) ) ) ) | |
| 24 | 9 16 22 23 | syl3anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 × 𝐵 ) ⊔ ( 𝐴 × 𝐶 ) ) ≈ ( ( 𝐴 × ( { ∅ } × 𝐵 ) ) ∪ ( 𝐴 × ( { 1o } × 𝐶 ) ) ) ) |
| 25 | df-dju | ⊢ ( 𝐵 ⊔ 𝐶 ) = ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐶 ) ) | |
| 26 | 25 | xpeq2i | ⊢ ( 𝐴 × ( 𝐵 ⊔ 𝐶 ) ) = ( 𝐴 × ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐶 ) ) ) |
| 27 | xpundi | ⊢ ( 𝐴 × ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐶 ) ) ) = ( ( 𝐴 × ( { ∅ } × 𝐵 ) ) ∪ ( 𝐴 × ( { 1o } × 𝐶 ) ) ) | |
| 28 | 26 27 | eqtri | ⊢ ( 𝐴 × ( 𝐵 ⊔ 𝐶 ) ) = ( ( 𝐴 × ( { ∅ } × 𝐵 ) ) ∪ ( 𝐴 × ( { 1o } × 𝐶 ) ) ) |
| 29 | 24 28 | breqtrrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 × 𝐵 ) ⊔ ( 𝐴 × 𝐶 ) ) ≈ ( 𝐴 × ( 𝐵 ⊔ 𝐶 ) ) ) |
| 30 | 29 | ensymd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 × ( 𝐵 ⊔ 𝐶 ) ) ≈ ( ( 𝐴 × 𝐵 ) ⊔ ( 𝐴 × 𝐶 ) ) ) |