This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of exponents law for cardinal arithmetic. Theorem 6I(4) of Enderton p. 142. (Contributed by NM, 27-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapdjuen | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ↑m ( 𝐵 ⊔ 𝐶 ) ) ≈ ( ( 𝐴 ↑m 𝐵 ) × ( 𝐴 ↑m 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju | ⊢ ( 𝐵 ⊔ 𝐶 ) = ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐶 ) ) | |
| 2 | 1 | oveq2i | ⊢ ( 𝐴 ↑m ( 𝐵 ⊔ 𝐶 ) ) = ( 𝐴 ↑m ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐶 ) ) ) |
| 3 | snex | ⊢ { ∅ } ∈ V | |
| 4 | simp2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝐵 ∈ 𝑊 ) | |
| 5 | xpexg | ⊢ ( ( { ∅ } ∈ V ∧ 𝐵 ∈ 𝑊 ) → ( { ∅ } × 𝐵 ) ∈ V ) | |
| 6 | 3 4 5 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( { ∅ } × 𝐵 ) ∈ V ) |
| 7 | snex | ⊢ { 1o } ∈ V | |
| 8 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝐶 ∈ 𝑋 ) | |
| 9 | xpexg | ⊢ ( ( { 1o } ∈ V ∧ 𝐶 ∈ 𝑋 ) → ( { 1o } × 𝐶 ) ∈ V ) | |
| 10 | 7 8 9 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( { 1o } × 𝐶 ) ∈ V ) |
| 11 | simp1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝐴 ∈ 𝑉 ) | |
| 12 | xp01disjl | ⊢ ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐶 ) ) = ∅ | |
| 13 | 12 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐶 ) ) = ∅ ) |
| 14 | mapunen | ⊢ ( ( ( ( { ∅ } × 𝐵 ) ∈ V ∧ ( { 1o } × 𝐶 ) ∈ V ∧ 𝐴 ∈ 𝑉 ) ∧ ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐶 ) ) = ∅ ) → ( 𝐴 ↑m ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐶 ) ) ) ≈ ( ( 𝐴 ↑m ( { ∅ } × 𝐵 ) ) × ( 𝐴 ↑m ( { 1o } × 𝐶 ) ) ) ) | |
| 15 | 6 10 11 13 14 | syl31anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ↑m ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐶 ) ) ) ≈ ( ( 𝐴 ↑m ( { ∅ } × 𝐵 ) ) × ( 𝐴 ↑m ( { 1o } × 𝐶 ) ) ) ) |
| 16 | 2 15 | eqbrtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ↑m ( 𝐵 ⊔ 𝐶 ) ) ≈ ( ( 𝐴 ↑m ( { ∅ } × 𝐵 ) ) × ( 𝐴 ↑m ( { 1o } × 𝐶 ) ) ) ) |
| 17 | enrefg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴 ) | |
| 18 | 11 17 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝐴 ≈ 𝐴 ) |
| 19 | 0ex | ⊢ ∅ ∈ V | |
| 20 | xpsnen2g | ⊢ ( ( ∅ ∈ V ∧ 𝐵 ∈ 𝑊 ) → ( { ∅ } × 𝐵 ) ≈ 𝐵 ) | |
| 21 | 19 4 20 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( { ∅ } × 𝐵 ) ≈ 𝐵 ) |
| 22 | mapen | ⊢ ( ( 𝐴 ≈ 𝐴 ∧ ( { ∅ } × 𝐵 ) ≈ 𝐵 ) → ( 𝐴 ↑m ( { ∅ } × 𝐵 ) ) ≈ ( 𝐴 ↑m 𝐵 ) ) | |
| 23 | 18 21 22 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ↑m ( { ∅ } × 𝐵 ) ) ≈ ( 𝐴 ↑m 𝐵 ) ) |
| 24 | 1on | ⊢ 1o ∈ On | |
| 25 | xpsnen2g | ⊢ ( ( 1o ∈ On ∧ 𝐶 ∈ 𝑋 ) → ( { 1o } × 𝐶 ) ≈ 𝐶 ) | |
| 26 | 24 8 25 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( { 1o } × 𝐶 ) ≈ 𝐶 ) |
| 27 | mapen | ⊢ ( ( 𝐴 ≈ 𝐴 ∧ ( { 1o } × 𝐶 ) ≈ 𝐶 ) → ( 𝐴 ↑m ( { 1o } × 𝐶 ) ) ≈ ( 𝐴 ↑m 𝐶 ) ) | |
| 28 | 18 26 27 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ↑m ( { 1o } × 𝐶 ) ) ≈ ( 𝐴 ↑m 𝐶 ) ) |
| 29 | xpen | ⊢ ( ( ( 𝐴 ↑m ( { ∅ } × 𝐵 ) ) ≈ ( 𝐴 ↑m 𝐵 ) ∧ ( 𝐴 ↑m ( { 1o } × 𝐶 ) ) ≈ ( 𝐴 ↑m 𝐶 ) ) → ( ( 𝐴 ↑m ( { ∅ } × 𝐵 ) ) × ( 𝐴 ↑m ( { 1o } × 𝐶 ) ) ) ≈ ( ( 𝐴 ↑m 𝐵 ) × ( 𝐴 ↑m 𝐶 ) ) ) | |
| 30 | 23 28 29 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 ↑m ( { ∅ } × 𝐵 ) ) × ( 𝐴 ↑m ( { 1o } × 𝐶 ) ) ) ≈ ( ( 𝐴 ↑m 𝐵 ) × ( 𝐴 ↑m 𝐶 ) ) ) |
| 31 | entr | ⊢ ( ( ( 𝐴 ↑m ( 𝐵 ⊔ 𝐶 ) ) ≈ ( ( 𝐴 ↑m ( { ∅ } × 𝐵 ) ) × ( 𝐴 ↑m ( { 1o } × 𝐶 ) ) ) ∧ ( ( 𝐴 ↑m ( { ∅ } × 𝐵 ) ) × ( 𝐴 ↑m ( { 1o } × 𝐶 ) ) ) ≈ ( ( 𝐴 ↑m 𝐵 ) × ( 𝐴 ↑m 𝐶 ) ) ) → ( 𝐴 ↑m ( 𝐵 ⊔ 𝐶 ) ) ≈ ( ( 𝐴 ↑m 𝐵 ) × ( 𝐴 ↑m 𝐶 ) ) ) | |
| 32 | 16 30 31 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ↑m ( 𝐵 ⊔ 𝐶 ) ) ≈ ( ( 𝐴 ↑m 𝐵 ) × ( 𝐴 ↑m 𝐶 ) ) ) |