This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for Cartesian product over union. Theorem 103 of Suppes p. 52. (Contributed by NM, 12-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpundi | ⊢ ( 𝐴 × ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐴 × 𝐵 ) ∪ ( 𝐴 × 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp | ⊢ ( 𝐴 × ( 𝐵 ∪ 𝐶 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ) } | |
| 2 | df-xp | ⊢ ( 𝐴 × 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } | |
| 3 | df-xp | ⊢ ( 𝐴 × 𝐶 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) } | |
| 4 | 2 3 | uneq12i | ⊢ ( ( 𝐴 × 𝐵 ) ∪ ( 𝐴 × 𝐶 ) ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) } ) |
| 5 | elun | ⊢ ( 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶 ) ) | |
| 6 | 5 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶 ) ) ) |
| 7 | andi | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∨ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∨ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 9 | 8 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∨ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) } |
| 10 | unopab | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∨ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) } | |
| 11 | 9 10 | eqtr4i | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ) } = ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) } ) |
| 12 | 4 11 | eqtr4i | ⊢ ( ( 𝐴 × 𝐵 ) ∪ ( 𝐴 × 𝐶 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ) } |
| 13 | 1 12 | eqtr4i | ⊢ ( 𝐴 × ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐴 × 𝐵 ) ∪ ( 𝐴 × 𝐶 ) ) |