This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of Enderton p. 142. (Contributed by NM, 26-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpdjuen | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A X. ( B |_| C ) ) ~~ ( ( A X. B ) |_| ( A X. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg | |- ( A e. V -> A ~~ A ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. V /\ B e. W /\ C e. X ) -> A ~~ A ) |
| 3 | 0ex | |- (/) e. _V |
|
| 4 | simp2 | |- ( ( A e. V /\ B e. W /\ C e. X ) -> B e. W ) |
|
| 5 | xpsnen2g | |- ( ( (/) e. _V /\ B e. W ) -> ( { (/) } X. B ) ~~ B ) |
|
| 6 | 3 4 5 | sylancr | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { (/) } X. B ) ~~ B ) |
| 7 | 6 | ensymd | |- ( ( A e. V /\ B e. W /\ C e. X ) -> B ~~ ( { (/) } X. B ) ) |
| 8 | xpen | |- ( ( A ~~ A /\ B ~~ ( { (/) } X. B ) ) -> ( A X. B ) ~~ ( A X. ( { (/) } X. B ) ) ) |
|
| 9 | 2 7 8 | syl2anc | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A X. B ) ~~ ( A X. ( { (/) } X. B ) ) ) |
| 10 | 1on | |- 1o e. On |
|
| 11 | simp3 | |- ( ( A e. V /\ B e. W /\ C e. X ) -> C e. X ) |
|
| 12 | xpsnen2g | |- ( ( 1o e. On /\ C e. X ) -> ( { 1o } X. C ) ~~ C ) |
|
| 13 | 10 11 12 | sylancr | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. C ) ~~ C ) |
| 14 | 13 | ensymd | |- ( ( A e. V /\ B e. W /\ C e. X ) -> C ~~ ( { 1o } X. C ) ) |
| 15 | xpen | |- ( ( A ~~ A /\ C ~~ ( { 1o } X. C ) ) -> ( A X. C ) ~~ ( A X. ( { 1o } X. C ) ) ) |
|
| 16 | 2 14 15 | syl2anc | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A X. C ) ~~ ( A X. ( { 1o } X. C ) ) ) |
| 17 | xp01disjl | |- ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) = (/) |
|
| 18 | 17 | xpeq2i | |- ( A X. ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) ) = ( A X. (/) ) |
| 19 | xpindi | |- ( A X. ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) ) = ( ( A X. ( { (/) } X. B ) ) i^i ( A X. ( { 1o } X. C ) ) ) |
|
| 20 | xp0 | |- ( A X. (/) ) = (/) |
|
| 21 | 18 19 20 | 3eqtr3i | |- ( ( A X. ( { (/) } X. B ) ) i^i ( A X. ( { 1o } X. C ) ) ) = (/) |
| 22 | 21 | a1i | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( A X. ( { (/) } X. B ) ) i^i ( A X. ( { 1o } X. C ) ) ) = (/) ) |
| 23 | djuenun | |- ( ( ( A X. B ) ~~ ( A X. ( { (/) } X. B ) ) /\ ( A X. C ) ~~ ( A X. ( { 1o } X. C ) ) /\ ( ( A X. ( { (/) } X. B ) ) i^i ( A X. ( { 1o } X. C ) ) ) = (/) ) -> ( ( A X. B ) |_| ( A X. C ) ) ~~ ( ( A X. ( { (/) } X. B ) ) u. ( A X. ( { 1o } X. C ) ) ) ) |
|
| 24 | 9 16 22 23 | syl3anc | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( A X. B ) |_| ( A X. C ) ) ~~ ( ( A X. ( { (/) } X. B ) ) u. ( A X. ( { 1o } X. C ) ) ) ) |
| 25 | df-dju | |- ( B |_| C ) = ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) |
|
| 26 | 25 | xpeq2i | |- ( A X. ( B |_| C ) ) = ( A X. ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) ) |
| 27 | xpundi | |- ( A X. ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) ) = ( ( A X. ( { (/) } X. B ) ) u. ( A X. ( { 1o } X. C ) ) ) |
|
| 28 | 26 27 | eqtri | |- ( A X. ( B |_| C ) ) = ( ( A X. ( { (/) } X. B ) ) u. ( A X. ( { 1o } X. C ) ) ) |
| 29 | 24 28 | breqtrrdi | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( A X. B ) |_| ( A X. C ) ) ~~ ( A X. ( B |_| C ) ) ) |
| 30 | 29 | ensymd | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A X. ( B |_| C ) ) ~~ ( ( A X. B ) |_| ( A X. C ) ) ) |