This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associativity of the extended real multiplication operation. Surprisingly, there are no restrictions on the values, unlike xaddass which has to avoid the "undefined" combinations +oo +e -oo and -oo +e +oo . The equivalent "undefined" expression here would be 0 *e +oo , but since this is defined to equal 0 any zeroes in the expression make the whole thing evaluate to zero (on both sides), thus establishing the identity in this case. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulass | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( x = A -> ( x *e B ) = ( A *e B ) ) |
|
| 2 | 1 | oveq1d | |- ( x = A -> ( ( x *e B ) *e C ) = ( ( A *e B ) *e C ) ) |
| 3 | oveq1 | |- ( x = A -> ( x *e ( B *e C ) ) = ( A *e ( B *e C ) ) ) |
|
| 4 | 2 3 | eqeq12d | |- ( x = A -> ( ( ( x *e B ) *e C ) = ( x *e ( B *e C ) ) <-> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) ) |
| 5 | oveq1 | |- ( x = -e A -> ( x *e B ) = ( -e A *e B ) ) |
|
| 6 | 5 | oveq1d | |- ( x = -e A -> ( ( x *e B ) *e C ) = ( ( -e A *e B ) *e C ) ) |
| 7 | oveq1 | |- ( x = -e A -> ( x *e ( B *e C ) ) = ( -e A *e ( B *e C ) ) ) |
|
| 8 | 6 7 | eqeq12d | |- ( x = -e A -> ( ( ( x *e B ) *e C ) = ( x *e ( B *e C ) ) <-> ( ( -e A *e B ) *e C ) = ( -e A *e ( B *e C ) ) ) ) |
| 9 | xmulcl | |- ( ( A e. RR* /\ B e. RR* ) -> ( A *e B ) e. RR* ) |
|
| 10 | xmulcl | |- ( ( ( A *e B ) e. RR* /\ C e. RR* ) -> ( ( A *e B ) *e C ) e. RR* ) |
|
| 11 | 9 10 | stoic3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A *e B ) *e C ) e. RR* ) |
| 12 | simp1 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> A e. RR* ) |
|
| 13 | xmulcl | |- ( ( B e. RR* /\ C e. RR* ) -> ( B *e C ) e. RR* ) |
|
| 14 | 13 | 3adant1 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( B *e C ) e. RR* ) |
| 15 | xmulcl | |- ( ( A e. RR* /\ ( B *e C ) e. RR* ) -> ( A *e ( B *e C ) ) e. RR* ) |
|
| 16 | 12 14 15 | syl2anc | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( A *e ( B *e C ) ) e. RR* ) |
| 17 | oveq2 | |- ( y = B -> ( x *e y ) = ( x *e B ) ) |
|
| 18 | 17 | oveq1d | |- ( y = B -> ( ( x *e y ) *e C ) = ( ( x *e B ) *e C ) ) |
| 19 | oveq1 | |- ( y = B -> ( y *e C ) = ( B *e C ) ) |
|
| 20 | 19 | oveq2d | |- ( y = B -> ( x *e ( y *e C ) ) = ( x *e ( B *e C ) ) ) |
| 21 | 18 20 | eqeq12d | |- ( y = B -> ( ( ( x *e y ) *e C ) = ( x *e ( y *e C ) ) <-> ( ( x *e B ) *e C ) = ( x *e ( B *e C ) ) ) ) |
| 22 | oveq2 | |- ( y = -e B -> ( x *e y ) = ( x *e -e B ) ) |
|
| 23 | 22 | oveq1d | |- ( y = -e B -> ( ( x *e y ) *e C ) = ( ( x *e -e B ) *e C ) ) |
| 24 | oveq1 | |- ( y = -e B -> ( y *e C ) = ( -e B *e C ) ) |
|
| 25 | 24 | oveq2d | |- ( y = -e B -> ( x *e ( y *e C ) ) = ( x *e ( -e B *e C ) ) ) |
| 26 | 23 25 | eqeq12d | |- ( y = -e B -> ( ( ( x *e y ) *e C ) = ( x *e ( y *e C ) ) <-> ( ( x *e -e B ) *e C ) = ( x *e ( -e B *e C ) ) ) ) |
| 27 | simprl | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> x e. RR* ) |
|
| 28 | simpl2 | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> B e. RR* ) |
|
| 29 | xmulcl | |- ( ( x e. RR* /\ B e. RR* ) -> ( x *e B ) e. RR* ) |
|
| 30 | 27 28 29 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( x *e B ) e. RR* ) |
| 31 | simpl3 | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> C e. RR* ) |
|
| 32 | xmulcl | |- ( ( ( x *e B ) e. RR* /\ C e. RR* ) -> ( ( x *e B ) *e C ) e. RR* ) |
|
| 33 | 30 31 32 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( ( x *e B ) *e C ) e. RR* ) |
| 34 | 14 | adantr | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( B *e C ) e. RR* ) |
| 35 | xmulcl | |- ( ( x e. RR* /\ ( B *e C ) e. RR* ) -> ( x *e ( B *e C ) ) e. RR* ) |
|
| 36 | 27 34 35 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( x *e ( B *e C ) ) e. RR* ) |
| 37 | oveq2 | |- ( z = C -> ( ( x *e y ) *e z ) = ( ( x *e y ) *e C ) ) |
|
| 38 | oveq2 | |- ( z = C -> ( y *e z ) = ( y *e C ) ) |
|
| 39 | 38 | oveq2d | |- ( z = C -> ( x *e ( y *e z ) ) = ( x *e ( y *e C ) ) ) |
| 40 | 37 39 | eqeq12d | |- ( z = C -> ( ( ( x *e y ) *e z ) = ( x *e ( y *e z ) ) <-> ( ( x *e y ) *e C ) = ( x *e ( y *e C ) ) ) ) |
| 41 | oveq2 | |- ( z = -e C -> ( ( x *e y ) *e z ) = ( ( x *e y ) *e -e C ) ) |
|
| 42 | oveq2 | |- ( z = -e C -> ( y *e z ) = ( y *e -e C ) ) |
|
| 43 | 42 | oveq2d | |- ( z = -e C -> ( x *e ( y *e z ) ) = ( x *e ( y *e -e C ) ) ) |
| 44 | 41 43 | eqeq12d | |- ( z = -e C -> ( ( ( x *e y ) *e z ) = ( x *e ( y *e z ) ) <-> ( ( x *e y ) *e -e C ) = ( x *e ( y *e -e C ) ) ) ) |
| 45 | 27 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> x e. RR* ) |
| 46 | simprl | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> y e. RR* ) |
|
| 47 | xmulcl | |- ( ( x e. RR* /\ y e. RR* ) -> ( x *e y ) e. RR* ) |
|
| 48 | 45 46 47 | syl2anc | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( x *e y ) e. RR* ) |
| 49 | 31 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> C e. RR* ) |
| 50 | xmulcl | |- ( ( ( x *e y ) e. RR* /\ C e. RR* ) -> ( ( x *e y ) *e C ) e. RR* ) |
|
| 51 | 48 49 50 | syl2anc | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( ( x *e y ) *e C ) e. RR* ) |
| 52 | xmulcl | |- ( ( y e. RR* /\ C e. RR* ) -> ( y *e C ) e. RR* ) |
|
| 53 | 46 49 52 | syl2anc | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( y *e C ) e. RR* ) |
| 54 | xmulcl | |- ( ( x e. RR* /\ ( y *e C ) e. RR* ) -> ( x *e ( y *e C ) ) e. RR* ) |
|
| 55 | 45 53 54 | syl2anc | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( x *e ( y *e C ) ) e. RR* ) |
| 56 | xmulasslem3 | |- ( ( ( x e. RR* /\ 0 < x ) /\ ( y e. RR* /\ 0 < y ) /\ ( z e. RR* /\ 0 < z ) ) -> ( ( x *e y ) *e z ) = ( x *e ( y *e z ) ) ) |
|
| 57 | 56 | ad4ant234 | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) /\ ( z e. RR* /\ 0 < z ) ) -> ( ( x *e y ) *e z ) = ( x *e ( y *e z ) ) ) |
| 58 | xmul01 | |- ( ( x *e y ) e. RR* -> ( ( x *e y ) *e 0 ) = 0 ) |
|
| 59 | 48 58 | syl | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( ( x *e y ) *e 0 ) = 0 ) |
| 60 | xmul01 | |- ( x e. RR* -> ( x *e 0 ) = 0 ) |
|
| 61 | 45 60 | syl | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( x *e 0 ) = 0 ) |
| 62 | 59 61 | eqtr4d | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( ( x *e y ) *e 0 ) = ( x *e 0 ) ) |
| 63 | xmul01 | |- ( y e. RR* -> ( y *e 0 ) = 0 ) |
|
| 64 | 63 | ad2antrl | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( y *e 0 ) = 0 ) |
| 65 | 64 | oveq2d | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( x *e ( y *e 0 ) ) = ( x *e 0 ) ) |
| 66 | 62 65 | eqtr4d | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( ( x *e y ) *e 0 ) = ( x *e ( y *e 0 ) ) ) |
| 67 | oveq2 | |- ( z = 0 -> ( ( x *e y ) *e z ) = ( ( x *e y ) *e 0 ) ) |
|
| 68 | oveq2 | |- ( z = 0 -> ( y *e z ) = ( y *e 0 ) ) |
|
| 69 | 68 | oveq2d | |- ( z = 0 -> ( x *e ( y *e z ) ) = ( x *e ( y *e 0 ) ) ) |
| 70 | 67 69 | eqeq12d | |- ( z = 0 -> ( ( ( x *e y ) *e z ) = ( x *e ( y *e z ) ) <-> ( ( x *e y ) *e 0 ) = ( x *e ( y *e 0 ) ) ) ) |
| 71 | 66 70 | syl5ibrcom | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( z = 0 -> ( ( x *e y ) *e z ) = ( x *e ( y *e z ) ) ) ) |
| 72 | xmulneg2 | |- ( ( ( x *e y ) e. RR* /\ C e. RR* ) -> ( ( x *e y ) *e -e C ) = -e ( ( x *e y ) *e C ) ) |
|
| 73 | 48 49 72 | syl2anc | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( ( x *e y ) *e -e C ) = -e ( ( x *e y ) *e C ) ) |
| 74 | xmulneg2 | |- ( ( y e. RR* /\ C e. RR* ) -> ( y *e -e C ) = -e ( y *e C ) ) |
|
| 75 | 46 49 74 | syl2anc | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( y *e -e C ) = -e ( y *e C ) ) |
| 76 | 75 | oveq2d | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( x *e ( y *e -e C ) ) = ( x *e -e ( y *e C ) ) ) |
| 77 | xmulneg2 | |- ( ( x e. RR* /\ ( y *e C ) e. RR* ) -> ( x *e -e ( y *e C ) ) = -e ( x *e ( y *e C ) ) ) |
|
| 78 | 45 53 77 | syl2anc | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( x *e -e ( y *e C ) ) = -e ( x *e ( y *e C ) ) ) |
| 79 | 76 78 | eqtrd | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( x *e ( y *e -e C ) ) = -e ( x *e ( y *e C ) ) ) |
| 80 | 40 44 51 55 49 57 71 73 79 | xmulasslem | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( ( x *e y ) *e C ) = ( x *e ( y *e C ) ) ) |
| 81 | xmul02 | |- ( C e. RR* -> ( 0 *e C ) = 0 ) |
|
| 82 | 81 | 3ad2ant3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( 0 *e C ) = 0 ) |
| 83 | 82 | adantr | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( 0 *e C ) = 0 ) |
| 84 | 60 | ad2antrl | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( x *e 0 ) = 0 ) |
| 85 | 83 84 | eqtr4d | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( 0 *e C ) = ( x *e 0 ) ) |
| 86 | 84 | oveq1d | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( ( x *e 0 ) *e C ) = ( 0 *e C ) ) |
| 87 | 83 | oveq2d | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( x *e ( 0 *e C ) ) = ( x *e 0 ) ) |
| 88 | 85 86 87 | 3eqtr4d | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( ( x *e 0 ) *e C ) = ( x *e ( 0 *e C ) ) ) |
| 89 | oveq2 | |- ( y = 0 -> ( x *e y ) = ( x *e 0 ) ) |
|
| 90 | 89 | oveq1d | |- ( y = 0 -> ( ( x *e y ) *e C ) = ( ( x *e 0 ) *e C ) ) |
| 91 | oveq1 | |- ( y = 0 -> ( y *e C ) = ( 0 *e C ) ) |
|
| 92 | 91 | oveq2d | |- ( y = 0 -> ( x *e ( y *e C ) ) = ( x *e ( 0 *e C ) ) ) |
| 93 | 90 92 | eqeq12d | |- ( y = 0 -> ( ( ( x *e y ) *e C ) = ( x *e ( y *e C ) ) <-> ( ( x *e 0 ) *e C ) = ( x *e ( 0 *e C ) ) ) ) |
| 94 | 88 93 | syl5ibrcom | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( y = 0 -> ( ( x *e y ) *e C ) = ( x *e ( y *e C ) ) ) ) |
| 95 | xmulneg2 | |- ( ( x e. RR* /\ B e. RR* ) -> ( x *e -e B ) = -e ( x *e B ) ) |
|
| 96 | 27 28 95 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( x *e -e B ) = -e ( x *e B ) ) |
| 97 | 96 | oveq1d | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( ( x *e -e B ) *e C ) = ( -e ( x *e B ) *e C ) ) |
| 98 | xmulneg1 | |- ( ( ( x *e B ) e. RR* /\ C e. RR* ) -> ( -e ( x *e B ) *e C ) = -e ( ( x *e B ) *e C ) ) |
|
| 99 | 30 31 98 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( -e ( x *e B ) *e C ) = -e ( ( x *e B ) *e C ) ) |
| 100 | 97 99 | eqtrd | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( ( x *e -e B ) *e C ) = -e ( ( x *e B ) *e C ) ) |
| 101 | xmulneg1 | |- ( ( B e. RR* /\ C e. RR* ) -> ( -e B *e C ) = -e ( B *e C ) ) |
|
| 102 | 28 31 101 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( -e B *e C ) = -e ( B *e C ) ) |
| 103 | 102 | oveq2d | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( x *e ( -e B *e C ) ) = ( x *e -e ( B *e C ) ) ) |
| 104 | xmulneg2 | |- ( ( x e. RR* /\ ( B *e C ) e. RR* ) -> ( x *e -e ( B *e C ) ) = -e ( x *e ( B *e C ) ) ) |
|
| 105 | 27 34 104 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( x *e -e ( B *e C ) ) = -e ( x *e ( B *e C ) ) ) |
| 106 | 103 105 | eqtrd | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( x *e ( -e B *e C ) ) = -e ( x *e ( B *e C ) ) ) |
| 107 | 21 26 33 36 28 80 94 100 106 | xmulasslem | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( ( x *e B ) *e C ) = ( x *e ( B *e C ) ) ) |
| 108 | xmul02 | |- ( B e. RR* -> ( 0 *e B ) = 0 ) |
|
| 109 | 108 | 3ad2ant2 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( 0 *e B ) = 0 ) |
| 110 | 109 | oveq1d | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( 0 *e B ) *e C ) = ( 0 *e C ) ) |
| 111 | xmul02 | |- ( ( B *e C ) e. RR* -> ( 0 *e ( B *e C ) ) = 0 ) |
|
| 112 | 14 111 | syl | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( 0 *e ( B *e C ) ) = 0 ) |
| 113 | 82 110 112 | 3eqtr4d | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( 0 *e B ) *e C ) = ( 0 *e ( B *e C ) ) ) |
| 114 | oveq1 | |- ( x = 0 -> ( x *e B ) = ( 0 *e B ) ) |
|
| 115 | 114 | oveq1d | |- ( x = 0 -> ( ( x *e B ) *e C ) = ( ( 0 *e B ) *e C ) ) |
| 116 | oveq1 | |- ( x = 0 -> ( x *e ( B *e C ) ) = ( 0 *e ( B *e C ) ) ) |
|
| 117 | 115 116 | eqeq12d | |- ( x = 0 -> ( ( ( x *e B ) *e C ) = ( x *e ( B *e C ) ) <-> ( ( 0 *e B ) *e C ) = ( 0 *e ( B *e C ) ) ) ) |
| 118 | 113 117 | syl5ibrcom | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x = 0 -> ( ( x *e B ) *e C ) = ( x *e ( B *e C ) ) ) ) |
| 119 | xmulneg1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e A *e B ) = -e ( A *e B ) ) |
|
| 120 | 119 | 3adant3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( -e A *e B ) = -e ( A *e B ) ) |
| 121 | 120 | oveq1d | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( -e A *e B ) *e C ) = ( -e ( A *e B ) *e C ) ) |
| 122 | xmulneg1 | |- ( ( ( A *e B ) e. RR* /\ C e. RR* ) -> ( -e ( A *e B ) *e C ) = -e ( ( A *e B ) *e C ) ) |
|
| 123 | 9 122 | stoic3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( -e ( A *e B ) *e C ) = -e ( ( A *e B ) *e C ) ) |
| 124 | 121 123 | eqtrd | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( -e A *e B ) *e C ) = -e ( ( A *e B ) *e C ) ) |
| 125 | xmulneg1 | |- ( ( A e. RR* /\ ( B *e C ) e. RR* ) -> ( -e A *e ( B *e C ) ) = -e ( A *e ( B *e C ) ) ) |
|
| 126 | 12 14 125 | syl2anc | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( -e A *e ( B *e C ) ) = -e ( A *e ( B *e C ) ) ) |
| 127 | 4 8 11 16 12 107 118 124 126 | xmulasslem | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |