This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for xmulass . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xmulasslem.1 | ⊢ ( 𝑥 = 𝐷 → ( 𝜓 ↔ 𝑋 = 𝑌 ) ) | |
| xmulasslem.2 | ⊢ ( 𝑥 = -𝑒 𝐷 → ( 𝜓 ↔ 𝐸 = 𝐹 ) ) | ||
| xmulasslem.x | ⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) | ||
| xmulasslem.y | ⊢ ( 𝜑 → 𝑌 ∈ ℝ* ) | ||
| xmulasslem.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) | ||
| xmulasslem.ps | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → 𝜓 ) | ||
| xmulasslem.0 | ⊢ ( 𝜑 → ( 𝑥 = 0 → 𝜓 ) ) | ||
| xmulasslem.e | ⊢ ( 𝜑 → 𝐸 = -𝑒 𝑋 ) | ||
| xmulasslem.f | ⊢ ( 𝜑 → 𝐹 = -𝑒 𝑌 ) | ||
| Assertion | xmulasslem | ⊢ ( 𝜑 → 𝑋 = 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmulasslem.1 | ⊢ ( 𝑥 = 𝐷 → ( 𝜓 ↔ 𝑋 = 𝑌 ) ) | |
| 2 | xmulasslem.2 | ⊢ ( 𝑥 = -𝑒 𝐷 → ( 𝜓 ↔ 𝐸 = 𝐹 ) ) | |
| 3 | xmulasslem.x | ⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) | |
| 4 | xmulasslem.y | ⊢ ( 𝜑 → 𝑌 ∈ ℝ* ) | |
| 5 | xmulasslem.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) | |
| 6 | xmulasslem.ps | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → 𝜓 ) | |
| 7 | xmulasslem.0 | ⊢ ( 𝜑 → ( 𝑥 = 0 → 𝜓 ) ) | |
| 8 | xmulasslem.e | ⊢ ( 𝜑 → 𝐸 = -𝑒 𝑋 ) | |
| 9 | xmulasslem.f | ⊢ ( 𝜑 → 𝐹 = -𝑒 𝑌 ) | |
| 10 | 0xr | ⊢ 0 ∈ ℝ* | |
| 11 | xrltso | ⊢ < Or ℝ* | |
| 12 | solin | ⊢ ( ( < Or ℝ* ∧ ( 𝐷 ∈ ℝ* ∧ 0 ∈ ℝ* ) ) → ( 𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷 ) ) | |
| 13 | 11 12 | mpan | ⊢ ( ( 𝐷 ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( 𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷 ) ) |
| 14 | 5 10 13 | sylancl | ⊢ ( 𝜑 → ( 𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷 ) ) |
| 15 | xlt0neg1 | ⊢ ( 𝐷 ∈ ℝ* → ( 𝐷 < 0 ↔ 0 < -𝑒 𝐷 ) ) | |
| 16 | 5 15 | syl | ⊢ ( 𝜑 → ( 𝐷 < 0 ↔ 0 < -𝑒 𝐷 ) ) |
| 17 | xnegcl | ⊢ ( 𝐷 ∈ ℝ* → -𝑒 𝐷 ∈ ℝ* ) | |
| 18 | 5 17 | syl | ⊢ ( 𝜑 → -𝑒 𝐷 ∈ ℝ* ) |
| 19 | breq2 | ⊢ ( 𝑥 = -𝑒 𝐷 → ( 0 < 𝑥 ↔ 0 < -𝑒 𝐷 ) ) | |
| 20 | 19 2 | imbi12d | ⊢ ( 𝑥 = -𝑒 𝐷 → ( ( 0 < 𝑥 → 𝜓 ) ↔ ( 0 < -𝑒 𝐷 → 𝐸 = 𝐹 ) ) ) |
| 21 | 20 | imbi2d | ⊢ ( 𝑥 = -𝑒 𝐷 → ( ( 𝜑 → ( 0 < 𝑥 → 𝜓 ) ) ↔ ( 𝜑 → ( 0 < -𝑒 𝐷 → 𝐸 = 𝐹 ) ) ) ) |
| 22 | 6 | exp32 | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ* → ( 0 < 𝑥 → 𝜓 ) ) ) |
| 23 | 22 | com12 | ⊢ ( 𝑥 ∈ ℝ* → ( 𝜑 → ( 0 < 𝑥 → 𝜓 ) ) ) |
| 24 | 21 23 | vtoclga | ⊢ ( -𝑒 𝐷 ∈ ℝ* → ( 𝜑 → ( 0 < -𝑒 𝐷 → 𝐸 = 𝐹 ) ) ) |
| 25 | 18 24 | mpcom | ⊢ ( 𝜑 → ( 0 < -𝑒 𝐷 → 𝐸 = 𝐹 ) ) |
| 26 | 16 25 | sylbid | ⊢ ( 𝜑 → ( 𝐷 < 0 → 𝐸 = 𝐹 ) ) |
| 27 | 8 9 | eqeq12d | ⊢ ( 𝜑 → ( 𝐸 = 𝐹 ↔ -𝑒 𝑋 = -𝑒 𝑌 ) ) |
| 28 | xneg11 | ⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ) → ( -𝑒 𝑋 = -𝑒 𝑌 ↔ 𝑋 = 𝑌 ) ) | |
| 29 | 3 4 28 | syl2anc | ⊢ ( 𝜑 → ( -𝑒 𝑋 = -𝑒 𝑌 ↔ 𝑋 = 𝑌 ) ) |
| 30 | 27 29 | bitrd | ⊢ ( 𝜑 → ( 𝐸 = 𝐹 ↔ 𝑋 = 𝑌 ) ) |
| 31 | 26 30 | sylibd | ⊢ ( 𝜑 → ( 𝐷 < 0 → 𝑋 = 𝑌 ) ) |
| 32 | eqeq1 | ⊢ ( 𝑥 = 𝐷 → ( 𝑥 = 0 ↔ 𝐷 = 0 ) ) | |
| 33 | 32 1 | imbi12d | ⊢ ( 𝑥 = 𝐷 → ( ( 𝑥 = 0 → 𝜓 ) ↔ ( 𝐷 = 0 → 𝑋 = 𝑌 ) ) ) |
| 34 | 33 | imbi2d | ⊢ ( 𝑥 = 𝐷 → ( ( 𝜑 → ( 𝑥 = 0 → 𝜓 ) ) ↔ ( 𝜑 → ( 𝐷 = 0 → 𝑋 = 𝑌 ) ) ) ) |
| 35 | 34 7 | vtoclg | ⊢ ( 𝐷 ∈ ℝ* → ( 𝜑 → ( 𝐷 = 0 → 𝑋 = 𝑌 ) ) ) |
| 36 | 5 35 | mpcom | ⊢ ( 𝜑 → ( 𝐷 = 0 → 𝑋 = 𝑌 ) ) |
| 37 | breq2 | ⊢ ( 𝑥 = 𝐷 → ( 0 < 𝑥 ↔ 0 < 𝐷 ) ) | |
| 38 | 37 1 | imbi12d | ⊢ ( 𝑥 = 𝐷 → ( ( 0 < 𝑥 → 𝜓 ) ↔ ( 0 < 𝐷 → 𝑋 = 𝑌 ) ) ) |
| 39 | 38 | imbi2d | ⊢ ( 𝑥 = 𝐷 → ( ( 𝜑 → ( 0 < 𝑥 → 𝜓 ) ) ↔ ( 𝜑 → ( 0 < 𝐷 → 𝑋 = 𝑌 ) ) ) ) |
| 40 | 39 23 | vtoclga | ⊢ ( 𝐷 ∈ ℝ* → ( 𝜑 → ( 0 < 𝐷 → 𝑋 = 𝑌 ) ) ) |
| 41 | 5 40 | mpcom | ⊢ ( 𝜑 → ( 0 < 𝐷 → 𝑋 = 𝑌 ) ) |
| 42 | 31 36 41 | 3jaod | ⊢ ( 𝜑 → ( ( 𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷 ) → 𝑋 = 𝑌 ) ) |
| 43 | 14 42 | mpd | ⊢ ( 𝜑 → 𝑋 = 𝑌 ) |