This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of lemul1 . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xlemul1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpxr | ⊢ ( 𝐶 ∈ ℝ+ → 𝐶 ∈ ℝ* ) | |
| 2 | rpge0 | ⊢ ( 𝐶 ∈ ℝ+ → 0 ≤ 𝐶 ) | |
| 3 | 1 2 | jca | ⊢ ( 𝐶 ∈ ℝ+ → ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) |
| 4 | xlemul1a | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) | |
| 5 | 4 | ex | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |
| 6 | 3 5 | syl3an3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |
| 7 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 𝐴 ∈ ℝ* ) | |
| 8 | 1 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℝ* ) |
| 9 | xmulcl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e 𝐶 ) ∈ ℝ* ) | |
| 10 | 7 8 9 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ·e 𝐶 ) ∈ ℝ* ) |
| 11 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 𝐵 ∈ ℝ* ) | |
| 12 | xmulcl | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) | |
| 13 | 11 8 12 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
| 14 | rpreccl | ⊢ ( 𝐶 ∈ ℝ+ → ( 1 / 𝐶 ) ∈ ℝ+ ) | |
| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 1 / 𝐶 ) ∈ ℝ+ ) |
| 16 | rpxr | ⊢ ( ( 1 / 𝐶 ) ∈ ℝ+ → ( 1 / 𝐶 ) ∈ ℝ* ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 1 / 𝐶 ) ∈ ℝ* ) |
| 18 | rpge0 | ⊢ ( ( 1 / 𝐶 ) ∈ ℝ+ → 0 ≤ ( 1 / 𝐶 ) ) | |
| 19 | 15 18 | syl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 0 ≤ ( 1 / 𝐶 ) ) |
| 20 | xlemul1a | ⊢ ( ( ( ( 𝐴 ·e 𝐶 ) ∈ ℝ* ∧ ( 𝐵 ·e 𝐶 ) ∈ ℝ* ∧ ( ( 1 / 𝐶 ) ∈ ℝ* ∧ 0 ≤ ( 1 / 𝐶 ) ) ) ∧ ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) → ( ( 𝐴 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) ≤ ( ( 𝐵 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) ) | |
| 21 | 20 | ex | ⊢ ( ( ( 𝐴 ·e 𝐶 ) ∈ ℝ* ∧ ( 𝐵 ·e 𝐶 ) ∈ ℝ* ∧ ( ( 1 / 𝐶 ) ∈ ℝ* ∧ 0 ≤ ( 1 / 𝐶 ) ) ) → ( ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) → ( ( 𝐴 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) ≤ ( ( 𝐵 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) ) ) |
| 22 | 10 13 17 19 21 | syl112anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) → ( ( 𝐴 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) ≤ ( ( 𝐵 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) ) ) |
| 23 | xmulass | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ ( 1 / 𝐶 ) ∈ ℝ* ) → ( ( 𝐴 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) = ( 𝐴 ·e ( 𝐶 ·e ( 1 / 𝐶 ) ) ) ) | |
| 24 | 7 8 17 23 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) = ( 𝐴 ·e ( 𝐶 ·e ( 1 / 𝐶 ) ) ) ) |
| 25 | rpre | ⊢ ( 𝐶 ∈ ℝ+ → 𝐶 ∈ ℝ ) | |
| 26 | 25 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℝ ) |
| 27 | 15 | rpred | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 1 / 𝐶 ) ∈ ℝ ) |
| 28 | rexmul | ⊢ ( ( 𝐶 ∈ ℝ ∧ ( 1 / 𝐶 ) ∈ ℝ ) → ( 𝐶 ·e ( 1 / 𝐶 ) ) = ( 𝐶 · ( 1 / 𝐶 ) ) ) | |
| 29 | 26 27 28 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐶 ·e ( 1 / 𝐶 ) ) = ( 𝐶 · ( 1 / 𝐶 ) ) ) |
| 30 | 26 | recnd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℂ ) |
| 31 | rpne0 | ⊢ ( 𝐶 ∈ ℝ+ → 𝐶 ≠ 0 ) | |
| 32 | 31 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ≠ 0 ) |
| 33 | 30 32 | recidd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐶 · ( 1 / 𝐶 ) ) = 1 ) |
| 34 | 29 33 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐶 ·e ( 1 / 𝐶 ) ) = 1 ) |
| 35 | 34 | oveq2d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ·e ( 𝐶 ·e ( 1 / 𝐶 ) ) ) = ( 𝐴 ·e 1 ) ) |
| 36 | xmulrid | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ·e 1 ) = 𝐴 ) | |
| 37 | 7 36 | syl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ·e 1 ) = 𝐴 ) |
| 38 | 24 35 37 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) = 𝐴 ) |
| 39 | xmulass | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ ( 1 / 𝐶 ) ∈ ℝ* ) → ( ( 𝐵 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) = ( 𝐵 ·e ( 𝐶 ·e ( 1 / 𝐶 ) ) ) ) | |
| 40 | 11 8 17 39 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐵 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) = ( 𝐵 ·e ( 𝐶 ·e ( 1 / 𝐶 ) ) ) ) |
| 41 | 34 | oveq2d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐵 ·e ( 𝐶 ·e ( 1 / 𝐶 ) ) ) = ( 𝐵 ·e 1 ) ) |
| 42 | xmulrid | ⊢ ( 𝐵 ∈ ℝ* → ( 𝐵 ·e 1 ) = 𝐵 ) | |
| 43 | 11 42 | syl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐵 ·e 1 ) = 𝐵 ) |
| 44 | 40 41 43 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐵 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) = 𝐵 ) |
| 45 | 38 44 | breq12d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( ( ( 𝐴 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) ≤ ( ( 𝐵 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) ↔ 𝐴 ≤ 𝐵 ) ) |
| 46 | 22 45 | sylibd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) → 𝐴 ≤ 𝐵 ) ) |
| 47 | 6 46 | impbid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |