This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of lemul1 . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xlemul1 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A <_ B <-> ( A *e C ) <_ ( B *e C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpxr | |- ( C e. RR+ -> C e. RR* ) |
|
| 2 | rpge0 | |- ( C e. RR+ -> 0 <_ C ) |
|
| 3 | 1 2 | jca | |- ( C e. RR+ -> ( C e. RR* /\ 0 <_ C ) ) |
| 4 | xlemul1a | |- ( ( ( A e. RR* /\ B e. RR* /\ ( C e. RR* /\ 0 <_ C ) ) /\ A <_ B ) -> ( A *e C ) <_ ( B *e C ) ) |
|
| 5 | 4 | ex | |- ( ( A e. RR* /\ B e. RR* /\ ( C e. RR* /\ 0 <_ C ) ) -> ( A <_ B -> ( A *e C ) <_ ( B *e C ) ) ) |
| 6 | 3 5 | syl3an3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A <_ B -> ( A *e C ) <_ ( B *e C ) ) ) |
| 7 | simp1 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> A e. RR* ) |
|
| 8 | 1 | 3ad2ant3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> C e. RR* ) |
| 9 | xmulcl | |- ( ( A e. RR* /\ C e. RR* ) -> ( A *e C ) e. RR* ) |
|
| 10 | 7 8 9 | syl2anc | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A *e C ) e. RR* ) |
| 11 | simp2 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> B e. RR* ) |
|
| 12 | xmulcl | |- ( ( B e. RR* /\ C e. RR* ) -> ( B *e C ) e. RR* ) |
|
| 13 | 11 8 12 | syl2anc | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( B *e C ) e. RR* ) |
| 14 | rpreccl | |- ( C e. RR+ -> ( 1 / C ) e. RR+ ) |
|
| 15 | 14 | 3ad2ant3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( 1 / C ) e. RR+ ) |
| 16 | rpxr | |- ( ( 1 / C ) e. RR+ -> ( 1 / C ) e. RR* ) |
|
| 17 | 15 16 | syl | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( 1 / C ) e. RR* ) |
| 18 | rpge0 | |- ( ( 1 / C ) e. RR+ -> 0 <_ ( 1 / C ) ) |
|
| 19 | 15 18 | syl | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> 0 <_ ( 1 / C ) ) |
| 20 | xlemul1a | |- ( ( ( ( A *e C ) e. RR* /\ ( B *e C ) e. RR* /\ ( ( 1 / C ) e. RR* /\ 0 <_ ( 1 / C ) ) ) /\ ( A *e C ) <_ ( B *e C ) ) -> ( ( A *e C ) *e ( 1 / C ) ) <_ ( ( B *e C ) *e ( 1 / C ) ) ) |
|
| 21 | 20 | ex | |- ( ( ( A *e C ) e. RR* /\ ( B *e C ) e. RR* /\ ( ( 1 / C ) e. RR* /\ 0 <_ ( 1 / C ) ) ) -> ( ( A *e C ) <_ ( B *e C ) -> ( ( A *e C ) *e ( 1 / C ) ) <_ ( ( B *e C ) *e ( 1 / C ) ) ) ) |
| 22 | 10 13 17 19 21 | syl112anc | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( ( A *e C ) <_ ( B *e C ) -> ( ( A *e C ) *e ( 1 / C ) ) <_ ( ( B *e C ) *e ( 1 / C ) ) ) ) |
| 23 | xmulass | |- ( ( A e. RR* /\ C e. RR* /\ ( 1 / C ) e. RR* ) -> ( ( A *e C ) *e ( 1 / C ) ) = ( A *e ( C *e ( 1 / C ) ) ) ) |
|
| 24 | 7 8 17 23 | syl3anc | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( ( A *e C ) *e ( 1 / C ) ) = ( A *e ( C *e ( 1 / C ) ) ) ) |
| 25 | rpre | |- ( C e. RR+ -> C e. RR ) |
|
| 26 | 25 | 3ad2ant3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> C e. RR ) |
| 27 | 15 | rpred | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( 1 / C ) e. RR ) |
| 28 | rexmul | |- ( ( C e. RR /\ ( 1 / C ) e. RR ) -> ( C *e ( 1 / C ) ) = ( C x. ( 1 / C ) ) ) |
|
| 29 | 26 27 28 | syl2anc | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( C *e ( 1 / C ) ) = ( C x. ( 1 / C ) ) ) |
| 30 | 26 | recnd | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> C e. CC ) |
| 31 | rpne0 | |- ( C e. RR+ -> C =/= 0 ) |
|
| 32 | 31 | 3ad2ant3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> C =/= 0 ) |
| 33 | 30 32 | recidd | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( C x. ( 1 / C ) ) = 1 ) |
| 34 | 29 33 | eqtrd | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( C *e ( 1 / C ) ) = 1 ) |
| 35 | 34 | oveq2d | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A *e ( C *e ( 1 / C ) ) ) = ( A *e 1 ) ) |
| 36 | xmulrid | |- ( A e. RR* -> ( A *e 1 ) = A ) |
|
| 37 | 7 36 | syl | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A *e 1 ) = A ) |
| 38 | 24 35 37 | 3eqtrd | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( ( A *e C ) *e ( 1 / C ) ) = A ) |
| 39 | xmulass | |- ( ( B e. RR* /\ C e. RR* /\ ( 1 / C ) e. RR* ) -> ( ( B *e C ) *e ( 1 / C ) ) = ( B *e ( C *e ( 1 / C ) ) ) ) |
|
| 40 | 11 8 17 39 | syl3anc | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( ( B *e C ) *e ( 1 / C ) ) = ( B *e ( C *e ( 1 / C ) ) ) ) |
| 41 | 34 | oveq2d | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( B *e ( C *e ( 1 / C ) ) ) = ( B *e 1 ) ) |
| 42 | xmulrid | |- ( B e. RR* -> ( B *e 1 ) = B ) |
|
| 43 | 11 42 | syl | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( B *e 1 ) = B ) |
| 44 | 40 41 43 | 3eqtrd | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( ( B *e C ) *e ( 1 / C ) ) = B ) |
| 45 | 38 44 | breq12d | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( ( ( A *e C ) *e ( 1 / C ) ) <_ ( ( B *e C ) *e ( 1 / C ) ) <-> A <_ B ) ) |
| 46 | 22 45 | sylibd | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( ( A *e C ) <_ ( B *e C ) -> A <_ B ) ) |
| 47 | 6 46 | impbid | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A <_ B <-> ( A *e C ) <_ ( B *e C ) ) ) |