This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of mulrid . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulrid | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ·e 1 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | ⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) | |
| 2 | 1re | ⊢ 1 ∈ ℝ | |
| 3 | rexmul | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝐴 ·e 1 ) = ( 𝐴 · 1 ) ) | |
| 4 | 2 3 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ·e 1 ) = ( 𝐴 · 1 ) ) |
| 5 | ax-1rid | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 1 ) = 𝐴 ) | |
| 6 | 4 5 | eqtrd | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ·e 1 ) = 𝐴 ) |
| 7 | 1xr | ⊢ 1 ∈ ℝ* | |
| 8 | 0lt1 | ⊢ 0 < 1 | |
| 9 | xmulpnf2 | ⊢ ( ( 1 ∈ ℝ* ∧ 0 < 1 ) → ( +∞ ·e 1 ) = +∞ ) | |
| 10 | 7 8 9 | mp2an | ⊢ ( +∞ ·e 1 ) = +∞ |
| 11 | oveq1 | ⊢ ( 𝐴 = +∞ → ( 𝐴 ·e 1 ) = ( +∞ ·e 1 ) ) | |
| 12 | id | ⊢ ( 𝐴 = +∞ → 𝐴 = +∞ ) | |
| 13 | 10 11 12 | 3eqtr4a | ⊢ ( 𝐴 = +∞ → ( 𝐴 ·e 1 ) = 𝐴 ) |
| 14 | xmulmnf2 | ⊢ ( ( 1 ∈ ℝ* ∧ 0 < 1 ) → ( -∞ ·e 1 ) = -∞ ) | |
| 15 | 7 8 14 | mp2an | ⊢ ( -∞ ·e 1 ) = -∞ |
| 16 | oveq1 | ⊢ ( 𝐴 = -∞ → ( 𝐴 ·e 1 ) = ( -∞ ·e 1 ) ) | |
| 17 | id | ⊢ ( 𝐴 = -∞ → 𝐴 = -∞ ) | |
| 18 | 15 16 17 | 3eqtr4a | ⊢ ( 𝐴 = -∞ → ( 𝐴 ·e 1 ) = 𝐴 ) |
| 19 | 6 13 18 | 3jaoi | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) → ( 𝐴 ·e 1 ) = 𝐴 ) |
| 20 | 1 19 | sylbi | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ·e 1 ) = 𝐴 ) |