This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk. Notice that G is a simple graph (without loops) only if X =/= Y . (Contributed by Alexander van der Vekens, 22-Oct-2017) (Revised by AV, 8-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlk2v2e.i | ⊢ 𝐼 = 〈“ { 𝑋 , 𝑌 } ”〉 | |
| wlk2v2e.f | ⊢ 𝐹 = 〈“ 0 0 ”〉 | ||
| wlk2v2e.x | ⊢ 𝑋 ∈ V | ||
| wlk2v2e.y | ⊢ 𝑌 ∈ V | ||
| wlk2v2e.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 𝑋 ”〉 | ||
| wlk2v2e.g | ⊢ 𝐺 = 〈 { 𝑋 , 𝑌 } , 𝐼 〉 | ||
| Assertion | wlk2v2e | ⊢ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlk2v2e.i | ⊢ 𝐼 = 〈“ { 𝑋 , 𝑌 } ”〉 | |
| 2 | wlk2v2e.f | ⊢ 𝐹 = 〈“ 0 0 ”〉 | |
| 3 | wlk2v2e.x | ⊢ 𝑋 ∈ V | |
| 4 | wlk2v2e.y | ⊢ 𝑌 ∈ V | |
| 5 | wlk2v2e.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 𝑋 ”〉 | |
| 6 | wlk2v2e.g | ⊢ 𝐺 = 〈 { 𝑋 , 𝑌 } , 𝐼 〉 | |
| 7 | 1 | opeq2i | ⊢ 〈 { 𝑋 , 𝑌 } , 𝐼 〉 = 〈 { 𝑋 , 𝑌 } , 〈“ { 𝑋 , 𝑌 } ”〉 〉 |
| 8 | 6 7 | eqtri | ⊢ 𝐺 = 〈 { 𝑋 , 𝑌 } , 〈“ { 𝑋 , 𝑌 } ”〉 〉 |
| 9 | uspgr2v1e2w | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → 〈 { 𝑋 , 𝑌 } , 〈“ { 𝑋 , 𝑌 } ”〉 〉 ∈ USPGraph ) | |
| 10 | 3 4 9 | mp2an | ⊢ 〈 { 𝑋 , 𝑌 } , 〈“ { 𝑋 , 𝑌 } ”〉 〉 ∈ USPGraph |
| 11 | 8 10 | eqeltri | ⊢ 𝐺 ∈ USPGraph |
| 12 | uspgrupgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) | |
| 13 | 11 12 | ax-mp | ⊢ 𝐺 ∈ UPGraph |
| 14 | 1 2 | wlk2v2elem1 | ⊢ 𝐹 ∈ Word dom 𝐼 |
| 15 | 3 | prid1 | ⊢ 𝑋 ∈ { 𝑋 , 𝑌 } |
| 16 | 4 | prid2 | ⊢ 𝑌 ∈ { 𝑋 , 𝑌 } |
| 17 | s3cl | ⊢ ( ( 𝑋 ∈ { 𝑋 , 𝑌 } ∧ 𝑌 ∈ { 𝑋 , 𝑌 } ∧ 𝑋 ∈ { 𝑋 , 𝑌 } ) → 〈“ 𝑋 𝑌 𝑋 ”〉 ∈ Word { 𝑋 , 𝑌 } ) | |
| 18 | 15 16 15 17 | mp3an | ⊢ 〈“ 𝑋 𝑌 𝑋 ”〉 ∈ Word { 𝑋 , 𝑌 } |
| 19 | 5 18 | eqeltri | ⊢ 𝑃 ∈ Word { 𝑋 , 𝑌 } |
| 20 | wrdf | ⊢ ( 𝑃 ∈ Word { 𝑋 , 𝑌 } → 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ { 𝑋 , 𝑌 } ) | |
| 21 | 19 20 | ax-mp | ⊢ 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ { 𝑋 , 𝑌 } |
| 22 | 5 | fveq2i | ⊢ ( ♯ ‘ 𝑃 ) = ( ♯ ‘ 〈“ 𝑋 𝑌 𝑋 ”〉 ) |
| 23 | s3len | ⊢ ( ♯ ‘ 〈“ 𝑋 𝑌 𝑋 ”〉 ) = 3 | |
| 24 | 22 23 | eqtr2i | ⊢ 3 = ( ♯ ‘ 𝑃 ) |
| 25 | 24 | oveq2i | ⊢ ( 0 ..^ 3 ) = ( 0 ..^ ( ♯ ‘ 𝑃 ) ) |
| 26 | 25 | feq2i | ⊢ ( 𝑃 : ( 0 ..^ 3 ) ⟶ { 𝑋 , 𝑌 } ↔ 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ { 𝑋 , 𝑌 } ) |
| 27 | 21 26 | mpbir | ⊢ 𝑃 : ( 0 ..^ 3 ) ⟶ { 𝑋 , 𝑌 } |
| 28 | 2 | fveq2i | ⊢ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 〈“ 0 0 ”〉 ) |
| 29 | s2len | ⊢ ( ♯ ‘ 〈“ 0 0 ”〉 ) = 2 | |
| 30 | 28 29 | eqtri | ⊢ ( ♯ ‘ 𝐹 ) = 2 |
| 31 | 30 | oveq2i | ⊢ ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ... 2 ) |
| 32 | 3z | ⊢ 3 ∈ ℤ | |
| 33 | fzoval | ⊢ ( 3 ∈ ℤ → ( 0 ..^ 3 ) = ( 0 ... ( 3 − 1 ) ) ) | |
| 34 | 32 33 | ax-mp | ⊢ ( 0 ..^ 3 ) = ( 0 ... ( 3 − 1 ) ) |
| 35 | 3m1e2 | ⊢ ( 3 − 1 ) = 2 | |
| 36 | 35 | oveq2i | ⊢ ( 0 ... ( 3 − 1 ) ) = ( 0 ... 2 ) |
| 37 | 34 36 | eqtr2i | ⊢ ( 0 ... 2 ) = ( 0 ..^ 3 ) |
| 38 | 31 37 | eqtri | ⊢ ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 3 ) |
| 39 | 38 | feq2i | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ { 𝑋 , 𝑌 } ↔ 𝑃 : ( 0 ..^ 3 ) ⟶ { 𝑋 , 𝑌 } ) |
| 40 | 27 39 | mpbir | ⊢ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ { 𝑋 , 𝑌 } |
| 41 | 1 2 3 4 5 | wlk2v2elem2 | ⊢ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } |
| 42 | 14 40 41 | 3pm3.2i | ⊢ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ { 𝑋 , 𝑌 } ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) |
| 43 | 6 | fveq2i | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 〈 { 𝑋 , 𝑌 } , 𝐼 〉 ) |
| 44 | prex | ⊢ { 𝑋 , 𝑌 } ∈ V | |
| 45 | s1cli | ⊢ 〈“ { 𝑋 , 𝑌 } ”〉 ∈ Word V | |
| 46 | 1 45 | eqeltri | ⊢ 𝐼 ∈ Word V |
| 47 | opvtxfv | ⊢ ( ( { 𝑋 , 𝑌 } ∈ V ∧ 𝐼 ∈ Word V ) → ( Vtx ‘ 〈 { 𝑋 , 𝑌 } , 𝐼 〉 ) = { 𝑋 , 𝑌 } ) | |
| 48 | 44 46 47 | mp2an | ⊢ ( Vtx ‘ 〈 { 𝑋 , 𝑌 } , 𝐼 〉 ) = { 𝑋 , 𝑌 } |
| 49 | 43 48 | eqtr2i | ⊢ { 𝑋 , 𝑌 } = ( Vtx ‘ 𝐺 ) |
| 50 | 6 | fveq2i | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 〈 { 𝑋 , 𝑌 } , 𝐼 〉 ) |
| 51 | opiedgfv | ⊢ ( ( { 𝑋 , 𝑌 } ∈ V ∧ 𝐼 ∈ Word V ) → ( iEdg ‘ 〈 { 𝑋 , 𝑌 } , 𝐼 〉 ) = 𝐼 ) | |
| 52 | 44 46 51 | mp2an | ⊢ ( iEdg ‘ 〈 { 𝑋 , 𝑌 } , 𝐼 〉 ) = 𝐼 |
| 53 | 50 52 | eqtr2i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 54 | 49 53 | upgriswlk | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ { 𝑋 , 𝑌 } ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) ) |
| 55 | 42 54 | mpbiri | ⊢ ( 𝐺 ∈ UPGraph → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 56 | 13 55 | ax-mp | ⊢ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 |