This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A walk which is not a trail: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk, see wlk2v2e , but not a trail. Notice that G is a simple graph (without loops) only if X =/= Y . (Contributed by Alexander van der Vekens, 22-Oct-2017) (Revised by AV, 8-Jan-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlk2v2e.i | ⊢ 𝐼 = 〈“ { 𝑋 , 𝑌 } ”〉 | |
| wlk2v2e.f | ⊢ 𝐹 = 〈“ 0 0 ”〉 | ||
| wlk2v2e.x | ⊢ 𝑋 ∈ V | ||
| wlk2v2e.y | ⊢ 𝑌 ∈ V | ||
| wlk2v2e.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 𝑋 ”〉 | ||
| wlk2v2e.g | ⊢ 𝐺 = 〈 { 𝑋 , 𝑌 } , 𝐼 〉 | ||
| Assertion | ntrl2v2e | ⊢ ¬ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlk2v2e.i | ⊢ 𝐼 = 〈“ { 𝑋 , 𝑌 } ”〉 | |
| 2 | wlk2v2e.f | ⊢ 𝐹 = 〈“ 0 0 ”〉 | |
| 3 | wlk2v2e.x | ⊢ 𝑋 ∈ V | |
| 4 | wlk2v2e.y | ⊢ 𝑌 ∈ V | |
| 5 | wlk2v2e.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 𝑋 ”〉 | |
| 6 | wlk2v2e.g | ⊢ 𝐺 = 〈 { 𝑋 , 𝑌 } , 𝐼 〉 | |
| 7 | 0z | ⊢ 0 ∈ ℤ | |
| 8 | 1z | ⊢ 1 ∈ ℤ | |
| 9 | 7 8 7 | 3pm3.2i | ⊢ ( 0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 0 ∈ ℤ ) |
| 10 | 0ne1 | ⊢ 0 ≠ 1 | |
| 11 | s2prop | ⊢ ( ( 0 ∈ ℤ ∧ 0 ∈ ℤ ) → 〈“ 0 0 ”〉 = { 〈 0 , 0 〉 , 〈 1 , 0 〉 } ) | |
| 12 | 7 7 11 | mp2an | ⊢ 〈“ 0 0 ”〉 = { 〈 0 , 0 〉 , 〈 1 , 0 〉 } |
| 13 | 2 12 | eqtri | ⊢ 𝐹 = { 〈 0 , 0 〉 , 〈 1 , 0 〉 } |
| 14 | 13 | fpropnf1 | ⊢ ( ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 0 ∈ ℤ ) ∧ 0 ≠ 1 ) → ( Fun 𝐹 ∧ ¬ Fun ◡ 𝐹 ) ) |
| 15 | 9 10 14 | mp2an | ⊢ ( Fun 𝐹 ∧ ¬ Fun ◡ 𝐹 ) |
| 16 | 15 | simpri | ⊢ ¬ Fun ◡ 𝐹 |
| 17 | 16 | intnan | ⊢ ¬ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) |
| 18 | istrl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) ) | |
| 19 | 17 18 | mtbir | ⊢ ¬ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 |