This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk. Notice that G is a simple graph (without loops) only if X =/= Y . (Contributed by Alexander van der Vekens, 22-Oct-2017) (Revised by AV, 8-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlk2v2e.i | |- I = <" { X , Y } "> |
|
| wlk2v2e.f | |- F = <" 0 0 "> |
||
| wlk2v2e.x | |- X e. _V |
||
| wlk2v2e.y | |- Y e. _V |
||
| wlk2v2e.p | |- P = <" X Y X "> |
||
| wlk2v2e.g | |- G = <. { X , Y } , I >. |
||
| Assertion | wlk2v2e | |- F ( Walks ` G ) P |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlk2v2e.i | |- I = <" { X , Y } "> |
|
| 2 | wlk2v2e.f | |- F = <" 0 0 "> |
|
| 3 | wlk2v2e.x | |- X e. _V |
|
| 4 | wlk2v2e.y | |- Y e. _V |
|
| 5 | wlk2v2e.p | |- P = <" X Y X "> |
|
| 6 | wlk2v2e.g | |- G = <. { X , Y } , I >. |
|
| 7 | 1 | opeq2i | |- <. { X , Y } , I >. = <. { X , Y } , <" { X , Y } "> >. |
| 8 | 6 7 | eqtri | |- G = <. { X , Y } , <" { X , Y } "> >. |
| 9 | uspgr2v1e2w | |- ( ( X e. _V /\ Y e. _V ) -> <. { X , Y } , <" { X , Y } "> >. e. USPGraph ) |
|
| 10 | 3 4 9 | mp2an | |- <. { X , Y } , <" { X , Y } "> >. e. USPGraph |
| 11 | 8 10 | eqeltri | |- G e. USPGraph |
| 12 | uspgrupgr | |- ( G e. USPGraph -> G e. UPGraph ) |
|
| 13 | 11 12 | ax-mp | |- G e. UPGraph |
| 14 | 1 2 | wlk2v2elem1 | |- F e. Word dom I |
| 15 | 3 | prid1 | |- X e. { X , Y } |
| 16 | 4 | prid2 | |- Y e. { X , Y } |
| 17 | s3cl | |- ( ( X e. { X , Y } /\ Y e. { X , Y } /\ X e. { X , Y } ) -> <" X Y X "> e. Word { X , Y } ) |
|
| 18 | 15 16 15 17 | mp3an | |- <" X Y X "> e. Word { X , Y } |
| 19 | 5 18 | eqeltri | |- P e. Word { X , Y } |
| 20 | wrdf | |- ( P e. Word { X , Y } -> P : ( 0 ..^ ( # ` P ) ) --> { X , Y } ) |
|
| 21 | 19 20 | ax-mp | |- P : ( 0 ..^ ( # ` P ) ) --> { X , Y } |
| 22 | 5 | fveq2i | |- ( # ` P ) = ( # ` <" X Y X "> ) |
| 23 | s3len | |- ( # ` <" X Y X "> ) = 3 |
|
| 24 | 22 23 | eqtr2i | |- 3 = ( # ` P ) |
| 25 | 24 | oveq2i | |- ( 0 ..^ 3 ) = ( 0 ..^ ( # ` P ) ) |
| 26 | 25 | feq2i | |- ( P : ( 0 ..^ 3 ) --> { X , Y } <-> P : ( 0 ..^ ( # ` P ) ) --> { X , Y } ) |
| 27 | 21 26 | mpbir | |- P : ( 0 ..^ 3 ) --> { X , Y } |
| 28 | 2 | fveq2i | |- ( # ` F ) = ( # ` <" 0 0 "> ) |
| 29 | s2len | |- ( # ` <" 0 0 "> ) = 2 |
|
| 30 | 28 29 | eqtri | |- ( # ` F ) = 2 |
| 31 | 30 | oveq2i | |- ( 0 ... ( # ` F ) ) = ( 0 ... 2 ) |
| 32 | 3z | |- 3 e. ZZ |
|
| 33 | fzoval | |- ( 3 e. ZZ -> ( 0 ..^ 3 ) = ( 0 ... ( 3 - 1 ) ) ) |
|
| 34 | 32 33 | ax-mp | |- ( 0 ..^ 3 ) = ( 0 ... ( 3 - 1 ) ) |
| 35 | 3m1e2 | |- ( 3 - 1 ) = 2 |
|
| 36 | 35 | oveq2i | |- ( 0 ... ( 3 - 1 ) ) = ( 0 ... 2 ) |
| 37 | 34 36 | eqtr2i | |- ( 0 ... 2 ) = ( 0 ..^ 3 ) |
| 38 | 31 37 | eqtri | |- ( 0 ... ( # ` F ) ) = ( 0 ..^ 3 ) |
| 39 | 38 | feq2i | |- ( P : ( 0 ... ( # ` F ) ) --> { X , Y } <-> P : ( 0 ..^ 3 ) --> { X , Y } ) |
| 40 | 27 39 | mpbir | |- P : ( 0 ... ( # ` F ) ) --> { X , Y } |
| 41 | 1 2 3 4 5 | wlk2v2elem2 | |- A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } |
| 42 | 14 40 41 | 3pm3.2i | |- ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> { X , Y } /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
| 43 | 6 | fveq2i | |- ( Vtx ` G ) = ( Vtx ` <. { X , Y } , I >. ) |
| 44 | prex | |- { X , Y } e. _V |
|
| 45 | s1cli | |- <" { X , Y } "> e. Word _V |
|
| 46 | 1 45 | eqeltri | |- I e. Word _V |
| 47 | opvtxfv | |- ( ( { X , Y } e. _V /\ I e. Word _V ) -> ( Vtx ` <. { X , Y } , I >. ) = { X , Y } ) |
|
| 48 | 44 46 47 | mp2an | |- ( Vtx ` <. { X , Y } , I >. ) = { X , Y } |
| 49 | 43 48 | eqtr2i | |- { X , Y } = ( Vtx ` G ) |
| 50 | 6 | fveq2i | |- ( iEdg ` G ) = ( iEdg ` <. { X , Y } , I >. ) |
| 51 | opiedgfv | |- ( ( { X , Y } e. _V /\ I e. Word _V ) -> ( iEdg ` <. { X , Y } , I >. ) = I ) |
|
| 52 | 44 46 51 | mp2an | |- ( iEdg ` <. { X , Y } , I >. ) = I |
| 53 | 50 52 | eqtr2i | |- I = ( iEdg ` G ) |
| 54 | 49 53 | upgriswlk | |- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> { X , Y } /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 55 | 42 54 | mpbiri | |- ( G e. UPGraph -> F ( Walks ` G ) P ) |
| 56 | 13 55 | ax-mp | |- F ( Walks ` G ) P |