This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for wlk2v2e : The values of I after F are edges between two vertices enumerated by P . (Contributed by Alexander van der Vekens, 22-Oct-2017) (Revised by AV, 9-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlk2v2e.i | ⊢ 𝐼 = 〈“ { 𝑋 , 𝑌 } ”〉 | |
| wlk2v2e.f | ⊢ 𝐹 = 〈“ 0 0 ”〉 | ||
| wlk2v2e.x | ⊢ 𝑋 ∈ V | ||
| wlk2v2e.y | ⊢ 𝑌 ∈ V | ||
| wlk2v2e.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 𝑋 ”〉 | ||
| Assertion | wlk2v2elem2 | ⊢ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlk2v2e.i | ⊢ 𝐼 = 〈“ { 𝑋 , 𝑌 } ”〉 | |
| 2 | wlk2v2e.f | ⊢ 𝐹 = 〈“ 0 0 ”〉 | |
| 3 | wlk2v2e.x | ⊢ 𝑋 ∈ V | |
| 4 | wlk2v2e.y | ⊢ 𝑌 ∈ V | |
| 5 | wlk2v2e.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 𝑋 ”〉 | |
| 6 | 2 | fveq1i | ⊢ ( 𝐹 ‘ 0 ) = ( 〈“ 0 0 ”〉 ‘ 0 ) |
| 7 | 0z | ⊢ 0 ∈ ℤ | |
| 8 | s2fv0 | ⊢ ( 0 ∈ ℤ → ( 〈“ 0 0 ”〉 ‘ 0 ) = 0 ) | |
| 9 | 7 8 | ax-mp | ⊢ ( 〈“ 0 0 ”〉 ‘ 0 ) = 0 |
| 10 | 6 9 | eqtri | ⊢ ( 𝐹 ‘ 0 ) = 0 |
| 11 | 10 | fveq2i | ⊢ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = ( 𝐼 ‘ 0 ) |
| 12 | 1 | fveq1i | ⊢ ( 𝐼 ‘ 0 ) = ( 〈“ { 𝑋 , 𝑌 } ”〉 ‘ 0 ) |
| 13 | prex | ⊢ { 𝑋 , 𝑌 } ∈ V | |
| 14 | s1fv | ⊢ ( { 𝑋 , 𝑌 } ∈ V → ( 〈“ { 𝑋 , 𝑌 } ”〉 ‘ 0 ) = { 𝑋 , 𝑌 } ) | |
| 15 | 13 14 | ax-mp | ⊢ ( 〈“ { 𝑋 , 𝑌 } ”〉 ‘ 0 ) = { 𝑋 , 𝑌 } |
| 16 | 12 15 | eqtri | ⊢ ( 𝐼 ‘ 0 ) = { 𝑋 , 𝑌 } |
| 17 | 5 | fveq1i | ⊢ ( 𝑃 ‘ 0 ) = ( 〈“ 𝑋 𝑌 𝑋 ”〉 ‘ 0 ) |
| 18 | s3fv0 | ⊢ ( 𝑋 ∈ V → ( 〈“ 𝑋 𝑌 𝑋 ”〉 ‘ 0 ) = 𝑋 ) | |
| 19 | 3 18 | ax-mp | ⊢ ( 〈“ 𝑋 𝑌 𝑋 ”〉 ‘ 0 ) = 𝑋 |
| 20 | 17 19 | eqtri | ⊢ ( 𝑃 ‘ 0 ) = 𝑋 |
| 21 | 5 | fveq1i | ⊢ ( 𝑃 ‘ 1 ) = ( 〈“ 𝑋 𝑌 𝑋 ”〉 ‘ 1 ) |
| 22 | s3fv1 | ⊢ ( 𝑌 ∈ V → ( 〈“ 𝑋 𝑌 𝑋 ”〉 ‘ 1 ) = 𝑌 ) | |
| 23 | 4 22 | ax-mp | ⊢ ( 〈“ 𝑋 𝑌 𝑋 ”〉 ‘ 1 ) = 𝑌 |
| 24 | 21 23 | eqtri | ⊢ ( 𝑃 ‘ 1 ) = 𝑌 |
| 25 | 20 24 | preq12i | ⊢ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { 𝑋 , 𝑌 } |
| 26 | 25 | eqcomi | ⊢ { 𝑋 , 𝑌 } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } |
| 27 | 11 16 26 | 3eqtri | ⊢ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } |
| 28 | 2 | fveq1i | ⊢ ( 𝐹 ‘ 1 ) = ( 〈“ 0 0 ”〉 ‘ 1 ) |
| 29 | s2fv1 | ⊢ ( 0 ∈ ℤ → ( 〈“ 0 0 ”〉 ‘ 1 ) = 0 ) | |
| 30 | 7 29 | ax-mp | ⊢ ( 〈“ 0 0 ”〉 ‘ 1 ) = 0 |
| 31 | 28 30 | eqtri | ⊢ ( 𝐹 ‘ 1 ) = 0 |
| 32 | 31 | fveq2i | ⊢ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = ( 𝐼 ‘ 0 ) |
| 33 | prcom | ⊢ { 𝑋 , 𝑌 } = { 𝑌 , 𝑋 } | |
| 34 | 5 | fveq1i | ⊢ ( 𝑃 ‘ 2 ) = ( 〈“ 𝑋 𝑌 𝑋 ”〉 ‘ 2 ) |
| 35 | s3fv2 | ⊢ ( 𝑋 ∈ V → ( 〈“ 𝑋 𝑌 𝑋 ”〉 ‘ 2 ) = 𝑋 ) | |
| 36 | 3 35 | ax-mp | ⊢ ( 〈“ 𝑋 𝑌 𝑋 ”〉 ‘ 2 ) = 𝑋 |
| 37 | 34 36 | eqtri | ⊢ ( 𝑃 ‘ 2 ) = 𝑋 |
| 38 | 24 37 | preq12i | ⊢ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } = { 𝑌 , 𝑋 } |
| 39 | 38 | eqcomi | ⊢ { 𝑌 , 𝑋 } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } |
| 40 | 33 39 | eqtri | ⊢ { 𝑋 , 𝑌 } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } |
| 41 | 32 16 40 | 3eqtri | ⊢ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } |
| 42 | 2wlklem | ⊢ ( ∀ 𝑘 ∈ { 0 , 1 } ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) | |
| 43 | 27 41 42 | mpbir2an | ⊢ ∀ 𝑘 ∈ { 0 , 1 } ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } |
| 44 | 5 2 | 2wlkdlem2 | ⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 , 1 } |
| 45 | 44 | raleqi | ⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ ∀ 𝑘 ∈ { 0 , 1 } ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) |
| 46 | 43 45 | mpbir | ⊢ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } |