This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso . (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | weisoeq | |- ( ( ( R We A /\ R Se A ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> F = G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( G Isom R , S ( A , B ) -> G Isom R , S ( A , B ) ) |
|
| 2 | isocnv | |- ( F Isom R , S ( A , B ) -> `' F Isom S , R ( B , A ) ) |
|
| 3 | isotr | |- ( ( G Isom R , S ( A , B ) /\ `' F Isom S , R ( B , A ) ) -> ( `' F o. G ) Isom R , R ( A , A ) ) |
|
| 4 | 1 2 3 | syl2anr | |- ( ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) -> ( `' F o. G ) Isom R , R ( A , A ) ) |
| 5 | weniso | |- ( ( R We A /\ R Se A /\ ( `' F o. G ) Isom R , R ( A , A ) ) -> ( `' F o. G ) = ( _I |` A ) ) |
|
| 6 | 5 | 3expa | |- ( ( ( R We A /\ R Se A ) /\ ( `' F o. G ) Isom R , R ( A , A ) ) -> ( `' F o. G ) = ( _I |` A ) ) |
| 7 | 4 6 | sylan2 | |- ( ( ( R We A /\ R Se A ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> ( `' F o. G ) = ( _I |` A ) ) |
| 8 | simprl | |- ( ( ( R We A /\ R Se A ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> F Isom R , S ( A , B ) ) |
|
| 9 | isof1o | |- ( F Isom R , S ( A , B ) -> F : A -1-1-onto-> B ) |
|
| 10 | f1of1 | |- ( F : A -1-1-onto-> B -> F : A -1-1-> B ) |
|
| 11 | 8 9 10 | 3syl | |- ( ( ( R We A /\ R Se A ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> F : A -1-1-> B ) |
| 12 | simprr | |- ( ( ( R We A /\ R Se A ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> G Isom R , S ( A , B ) ) |
|
| 13 | isof1o | |- ( G Isom R , S ( A , B ) -> G : A -1-1-onto-> B ) |
|
| 14 | f1of1 | |- ( G : A -1-1-onto-> B -> G : A -1-1-> B ) |
|
| 15 | 12 13 14 | 3syl | |- ( ( ( R We A /\ R Se A ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> G : A -1-1-> B ) |
| 16 | f1eqcocnv | |- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> ( F = G <-> ( `' F o. G ) = ( _I |` A ) ) ) |
|
| 17 | 11 15 16 | syl2anc | |- ( ( ( R We A /\ R Se A ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> ( F = G <-> ( `' F o. G ) = ( _I |` A ) ) ) |
| 18 | 7 17 | mpbird | |- ( ( ( R We A /\ R Se A ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> F = G ) |