This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso2 . (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | weisoeq2 | ⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐹 = 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isocnv | ⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ◡ 𝐹 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) | |
| 2 | isocnv | ⊢ ( 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ◡ 𝐺 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) | |
| 3 | 1 2 | anim12i | ⊢ ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) → ( ◡ 𝐹 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ∧ ◡ 𝐺 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) ) |
| 4 | weisoeq | ⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( ◡ 𝐹 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ∧ ◡ 𝐺 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) ) → ◡ 𝐹 = ◡ 𝐺 ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → ◡ 𝐹 = ◡ 𝐺 ) |
| 6 | simprl | ⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| 7 | isof1o | ⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 8 | f1orel | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → Rel 𝐹 ) | |
| 9 | 6 7 8 | 3syl | ⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → Rel 𝐹 ) |
| 10 | simprr | ⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| 11 | isof1o | ⊢ ( 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐺 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 12 | f1orel | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → Rel 𝐺 ) | |
| 13 | 10 11 12 | 3syl | ⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → Rel 𝐺 ) |
| 14 | cnveqb | ⊢ ( ( Rel 𝐹 ∧ Rel 𝐺 ) → ( 𝐹 = 𝐺 ↔ ◡ 𝐹 = ◡ 𝐺 ) ) | |
| 15 | 9 13 14 | syl2anc | ⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → ( 𝐹 = 𝐺 ↔ ◡ 𝐹 = ◡ 𝐺 ) ) |
| 16 | 5 15 | mpbird | ⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐹 = 𝐺 ) |