This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce weak dominance from an implicit onto function (stated in a way which avoids ax-rep ). (Contributed by Stefan O'Rear, 13-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wdom2d.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| wdom2d.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| wdom2d.o | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 ) | ||
| Assertion | wdom2d | ⊢ ( 𝜑 → 𝐴 ≼* 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wdom2d.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | wdom2d.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 3 | wdom2d.o | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 ) | |
| 4 | rabexg | ⊢ ( 𝐵 ∈ 𝑊 → { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ∈ V ) | |
| 5 | 2 4 | syl | ⊢ ( 𝜑 → { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ∈ V ) |
| 6 | 5 1 | xpexd | ⊢ ( 𝜑 → ( { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } × 𝐴 ) ∈ V ) |
| 7 | csbeq1 | ⊢ ( 𝑧 = 𝑤 → ⦋ 𝑧 / 𝑦 ⦌ 𝑋 = ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑧 = 𝑤 → ( ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ↔ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ) ) |
| 9 | 8 | elrab | ⊢ ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↔ ( 𝑤 ∈ 𝐵 ∧ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ) ) |
| 10 | 9 | simprbi | ⊢ ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } → ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ) |
| 11 | 10 | adantl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ) → ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ) |
| 12 | 11 | fmpttd | ⊢ ( 𝜑 → ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) : { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ⟶ 𝐴 ) |
| 13 | fssxp | ⊢ ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) : { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ⟶ 𝐴 → ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ⊆ ( { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } × 𝐴 ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝜑 → ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ⊆ ( { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } × 𝐴 ) ) |
| 15 | 6 14 | ssexd | ⊢ ( 𝜑 → ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ∈ V ) |
| 16 | eleq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴 ) ) | |
| 17 | 16 | biimpcd | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 = 𝑋 → 𝑋 ∈ 𝐴 ) ) |
| 18 | 17 | ancrd | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 = 𝑋 → ( 𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋 ) ) ) |
| 19 | 18 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 = 𝑋 → ( 𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋 ) ) ) |
| 20 | 19 | reximdv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 → ∃ 𝑦 ∈ 𝐵 ( 𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋 ) ) ) |
| 21 | 3 20 | mpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋 ) ) |
| 22 | nfv | ⊢ Ⅎ 𝑣 ( 𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋 ) | |
| 23 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑣 / 𝑦 ⦌ 𝑋 | |
| 24 | 23 | nfel1 | ⊢ Ⅎ 𝑦 ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 |
| 25 | 23 | nfeq2 | ⊢ Ⅎ 𝑦 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 |
| 26 | 24 25 | nfan | ⊢ Ⅎ 𝑦 ( ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) |
| 27 | csbeq1a | ⊢ ( 𝑦 = 𝑣 → 𝑋 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) | |
| 28 | 27 | eleq1d | ⊢ ( 𝑦 = 𝑣 → ( 𝑋 ∈ 𝐴 ↔ ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ) ) |
| 29 | 27 | eqeq2d | ⊢ ( 𝑦 = 𝑣 → ( 𝑥 = 𝑋 ↔ 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) ) |
| 30 | 28 29 | anbi12d | ⊢ ( 𝑦 = 𝑣 → ( ( 𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋 ) ↔ ( ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) ) ) |
| 31 | 22 26 30 | cbvrexw | ⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋 ) ↔ ∃ 𝑣 ∈ 𝐵 ( ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) ) |
| 32 | 21 31 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑣 ∈ 𝐵 ( ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) ) |
| 33 | csbeq1 | ⊢ ( 𝑧 = 𝑣 → ⦋ 𝑧 / 𝑦 ⦌ 𝑋 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) | |
| 34 | 33 | eleq1d | ⊢ ( 𝑧 = 𝑣 → ( ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ↔ ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ) ) |
| 35 | 34 | elrab | ⊢ ( 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↔ ( 𝑣 ∈ 𝐵 ∧ ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ) ) |
| 36 | 35 | simprbi | ⊢ ( 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } → ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ) |
| 37 | csbeq1 | ⊢ ( 𝑤 = 𝑣 → ⦋ 𝑤 / 𝑦 ⦌ 𝑋 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) | |
| 38 | eqid | ⊢ ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) = ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) | |
| 39 | 37 38 | fvmptg | ⊢ ( ( 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ∧ ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ) → ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ‘ 𝑣 ) = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) |
| 40 | 36 39 | mpdan | ⊢ ( 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } → ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ‘ 𝑣 ) = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) |
| 41 | 40 | eqeq2d | ⊢ ( 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } → ( 𝑥 = ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ‘ 𝑣 ) ↔ 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) ) |
| 42 | 41 | rexbiia | ⊢ ( ∃ 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } 𝑥 = ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ‘ 𝑣 ) ↔ ∃ 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) |
| 43 | 34 | rexrab | ⊢ ( ∃ 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ↔ ∃ 𝑣 ∈ 𝐵 ( ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) ) |
| 44 | 42 43 | bitri | ⊢ ( ∃ 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } 𝑥 = ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ‘ 𝑣 ) ↔ ∃ 𝑣 ∈ 𝐵 ( ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) ) |
| 45 | 32 44 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } 𝑥 = ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ‘ 𝑣 ) ) |
| 46 | 45 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } 𝑥 = ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ‘ 𝑣 ) ) |
| 47 | dffo3 | ⊢ ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) : { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } –onto→ 𝐴 ↔ ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) : { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } 𝑥 = ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ‘ 𝑣 ) ) ) | |
| 48 | 12 46 47 | sylanbrc | ⊢ ( 𝜑 → ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) : { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } –onto→ 𝐴 ) |
| 49 | fowdom | ⊢ ( ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ∈ V ∧ ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) : { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } –onto→ 𝐴 ) → 𝐴 ≼* { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ) | |
| 50 | 15 48 49 | syl2anc | ⊢ ( 𝜑 → 𝐴 ≼* { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ) |
| 51 | ssrab2 | ⊢ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ⊆ 𝐵 | |
| 52 | ssdomg | ⊢ ( 𝐵 ∈ 𝑊 → ( { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ⊆ 𝐵 → { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ≼ 𝐵 ) ) | |
| 53 | 51 52 | mpi | ⊢ ( 𝐵 ∈ 𝑊 → { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ≼ 𝐵 ) |
| 54 | domwdom | ⊢ ( { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ≼ 𝐵 → { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ≼* 𝐵 ) | |
| 55 | 2 53 54 | 3syl | ⊢ ( 𝜑 → { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ≼* 𝐵 ) |
| 56 | wdomtr | ⊢ ( ( 𝐴 ≼* { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ∧ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ≼* 𝐵 ) → 𝐴 ≼* 𝐵 ) | |
| 57 | 50 55 56 | syl2anc | ⊢ ( 𝜑 → 𝐴 ≼* 𝐵 ) |