This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The degree of a vertex in an empty graph is zero, because there are no edges. This is the base case for the induction for calculating the degree of a vertex, for example in a Königsberg graph (see also the induction steps vdegp1ai , vdegp1bi and vdegp1ci ). (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 11-Dec-2020) (Revised by AV, 22-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdgf.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxdg0e.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | vtxdg0e | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝐼 = ∅ ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdgf.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxdg0e.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | 2 | eqeq1i | ⊢ ( 𝐼 = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) |
| 4 | dmeq | ⊢ ( ( iEdg ‘ 𝐺 ) = ∅ → dom ( iEdg ‘ 𝐺 ) = dom ∅ ) | |
| 5 | dm0 | ⊢ dom ∅ = ∅ | |
| 6 | 4 5 | eqtrdi | ⊢ ( ( iEdg ‘ 𝐺 ) = ∅ → dom ( iEdg ‘ 𝐺 ) = ∅ ) |
| 7 | 0fi | ⊢ ∅ ∈ Fin | |
| 8 | 6 7 | eqeltrdi | ⊢ ( ( iEdg ‘ 𝐺 ) = ∅ → dom ( iEdg ‘ 𝐺 ) ∈ Fin ) |
| 9 | 3 8 | sylbi | ⊢ ( 𝐼 = ∅ → dom ( iEdg ‘ 𝐺 ) ∈ Fin ) |
| 10 | simpl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝐼 = ∅ ) → 𝑈 ∈ 𝑉 ) | |
| 11 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 12 | eqid | ⊢ dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 ) | |
| 13 | 1 11 12 | vtxdgfival | ⊢ ( ( dom ( iEdg ‘ 𝐺 ) ∈ Fin ∧ 𝑈 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) + ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) ) ) |
| 14 | 9 10 13 | syl2an2 | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝐼 = ∅ ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) + ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) ) ) |
| 15 | 3 6 | sylbi | ⊢ ( 𝐼 = ∅ → dom ( iEdg ‘ 𝐺 ) = ∅ ) |
| 16 | 15 | adantl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝐼 = ∅ ) → dom ( iEdg ‘ 𝐺 ) = ∅ ) |
| 17 | rabeq | ⊢ ( dom ( iEdg ‘ 𝐺 ) = ∅ → { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = { 𝑥 ∈ ∅ ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) | |
| 18 | rab0 | ⊢ { 𝑥 ∈ ∅ ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = ∅ | |
| 19 | 17 18 | eqtrdi | ⊢ ( dom ( iEdg ‘ 𝐺 ) = ∅ → { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = ∅ ) |
| 20 | 19 | fveq2d | ⊢ ( dom ( iEdg ‘ 𝐺 ) = ∅ → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) = ( ♯ ‘ ∅ ) ) |
| 21 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 22 | 20 21 | eqtrdi | ⊢ ( dom ( iEdg ‘ 𝐺 ) = ∅ → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 0 ) |
| 23 | rabeq | ⊢ ( dom ( iEdg ‘ 𝐺 ) = ∅ → { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } = { 𝑥 ∈ ∅ ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) | |
| 24 | 23 | fveq2d | ⊢ ( dom ( iEdg ‘ 𝐺 ) = ∅ → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) = ( ♯ ‘ { 𝑥 ∈ ∅ ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) ) |
| 25 | rab0 | ⊢ { 𝑥 ∈ ∅ ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } = ∅ | |
| 26 | 25 | fveq2i | ⊢ ( ♯ ‘ { 𝑥 ∈ ∅ ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) = ( ♯ ‘ ∅ ) |
| 27 | 26 21 | eqtri | ⊢ ( ♯ ‘ { 𝑥 ∈ ∅ ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) = 0 |
| 28 | 24 27 | eqtrdi | ⊢ ( dom ( iEdg ‘ 𝐺 ) = ∅ → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) = 0 ) |
| 29 | 22 28 | oveq12d | ⊢ ( dom ( iEdg ‘ 𝐺 ) = ∅ → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) + ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) ) = ( 0 + 0 ) ) |
| 30 | 16 29 | syl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝐼 = ∅ ) → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) + ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) ) = ( 0 + 0 ) ) |
| 31 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 32 | 30 31 | eqtrdi | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝐼 = ∅ ) → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) + ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) ) = 0 ) |
| 33 | 14 32 | eqtrd | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝐼 = ∅ ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) |