This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of U in the edge set E is P , then adding { U , X } to the edge set, where X =/= U , yields degree P + 1 . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Revised by AV, 3-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vdegp1ai.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vdegp1ai.u | ⊢ 𝑈 ∈ 𝑉 | ||
| vdegp1ai.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| vdegp1ai.w | ⊢ 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } | ||
| vdegp1ai.d | ⊢ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 𝑃 | ||
| vdegp1ai.vf | ⊢ ( Vtx ‘ 𝐹 ) = 𝑉 | ||
| vdegp1bi.x | ⊢ 𝑋 ∈ 𝑉 | ||
| vdegp1bi.xu | ⊢ 𝑋 ≠ 𝑈 | ||
| vdegp1bi.f | ⊢ ( iEdg ‘ 𝐹 ) = ( 𝐼 ++ 〈“ { 𝑈 , 𝑋 } ”〉 ) | ||
| Assertion | vdegp1bi | ⊢ ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( 𝑃 + 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vdegp1ai.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vdegp1ai.u | ⊢ 𝑈 ∈ 𝑉 | |
| 3 | vdegp1ai.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 4 | vdegp1ai.w | ⊢ 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } | |
| 5 | vdegp1ai.d | ⊢ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 𝑃 | |
| 6 | vdegp1ai.vf | ⊢ ( Vtx ‘ 𝐹 ) = 𝑉 | |
| 7 | vdegp1bi.x | ⊢ 𝑋 ∈ 𝑉 | |
| 8 | vdegp1bi.xu | ⊢ 𝑋 ≠ 𝑈 | |
| 9 | vdegp1bi.f | ⊢ ( iEdg ‘ 𝐹 ) = ( 𝐼 ++ 〈“ { 𝑈 , 𝑋 } ”〉 ) | |
| 10 | prex | ⊢ { 𝑈 , 𝑋 } ∈ V | |
| 11 | wrdf | ⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → 𝐼 : ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) | |
| 12 | 11 | ffund | ⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → Fun 𝐼 ) |
| 13 | 4 12 | mp1i | ⊢ ( { 𝑈 , 𝑋 } ∈ V → Fun 𝐼 ) |
| 14 | 6 | a1i | ⊢ ( { 𝑈 , 𝑋 } ∈ V → ( Vtx ‘ 𝐹 ) = 𝑉 ) |
| 15 | wrdv | ⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → 𝐼 ∈ Word V ) | |
| 16 | 4 15 | ax-mp | ⊢ 𝐼 ∈ Word V |
| 17 | cats1un | ⊢ ( ( 𝐼 ∈ Word V ∧ { 𝑈 , 𝑋 } ∈ V ) → ( 𝐼 ++ 〈“ { 𝑈 , 𝑋 } ”〉 ) = ( 𝐼 ∪ { 〈 ( ♯ ‘ 𝐼 ) , { 𝑈 , 𝑋 } 〉 } ) ) | |
| 18 | 16 17 | mpan | ⊢ ( { 𝑈 , 𝑋 } ∈ V → ( 𝐼 ++ 〈“ { 𝑈 , 𝑋 } ”〉 ) = ( 𝐼 ∪ { 〈 ( ♯ ‘ 𝐼 ) , { 𝑈 , 𝑋 } 〉 } ) ) |
| 19 | 9 18 | eqtrid | ⊢ ( { 𝑈 , 𝑋 } ∈ V → ( iEdg ‘ 𝐹 ) = ( 𝐼 ∪ { 〈 ( ♯ ‘ 𝐼 ) , { 𝑈 , 𝑋 } 〉 } ) ) |
| 20 | fvexd | ⊢ ( { 𝑈 , 𝑋 } ∈ V → ( ♯ ‘ 𝐼 ) ∈ V ) | |
| 21 | wrdlndm | ⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( ♯ ‘ 𝐼 ) ∉ dom 𝐼 ) | |
| 22 | 4 21 | mp1i | ⊢ ( { 𝑈 , 𝑋 } ∈ V → ( ♯ ‘ 𝐼 ) ∉ dom 𝐼 ) |
| 23 | 2 | a1i | ⊢ ( { 𝑈 , 𝑋 } ∈ V → 𝑈 ∈ 𝑉 ) |
| 24 | 2 7 | pm3.2i | ⊢ ( 𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) |
| 25 | prelpwi | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → { 𝑈 , 𝑋 } ∈ 𝒫 𝑉 ) | |
| 26 | 24 25 | mp1i | ⊢ ( { 𝑈 , 𝑋 } ∈ V → { 𝑈 , 𝑋 } ∈ 𝒫 𝑉 ) |
| 27 | prid1g | ⊢ ( 𝑈 ∈ 𝑉 → 𝑈 ∈ { 𝑈 , 𝑋 } ) | |
| 28 | 2 27 | mp1i | ⊢ ( { 𝑈 , 𝑋 } ∈ V → 𝑈 ∈ { 𝑈 , 𝑋 } ) |
| 29 | 8 | necomi | ⊢ 𝑈 ≠ 𝑋 |
| 30 | hashprg | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑈 ≠ 𝑋 ↔ ( ♯ ‘ { 𝑈 , 𝑋 } ) = 2 ) ) | |
| 31 | 2 7 30 | mp2an | ⊢ ( 𝑈 ≠ 𝑋 ↔ ( ♯ ‘ { 𝑈 , 𝑋 } ) = 2 ) |
| 32 | 29 31 | mpbi | ⊢ ( ♯ ‘ { 𝑈 , 𝑋 } ) = 2 |
| 33 | 32 | eqcomi | ⊢ 2 = ( ♯ ‘ { 𝑈 , 𝑋 } ) |
| 34 | 2re | ⊢ 2 ∈ ℝ | |
| 35 | 34 | eqlei | ⊢ ( 2 = ( ♯ ‘ { 𝑈 , 𝑋 } ) → 2 ≤ ( ♯ ‘ { 𝑈 , 𝑋 } ) ) |
| 36 | 33 35 | mp1i | ⊢ ( { 𝑈 , 𝑋 } ∈ V → 2 ≤ ( ♯ ‘ { 𝑈 , 𝑋 } ) ) |
| 37 | 1 3 13 14 19 20 22 23 26 28 36 | p1evtxdp1 | ⊢ ( { 𝑈 , 𝑋 } ∈ V → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 1 ) ) |
| 38 | 10 37 | ax-mp | ⊢ ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 1 ) |
| 39 | fzofi | ⊢ ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ∈ Fin | |
| 40 | wrddm | ⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → dom 𝐼 = ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ) | |
| 41 | 4 40 | ax-mp | ⊢ dom 𝐼 = ( 0 ..^ ( ♯ ‘ 𝐼 ) ) |
| 42 | 41 | eqcomi | ⊢ ( 0 ..^ ( ♯ ‘ 𝐼 ) ) = dom 𝐼 |
| 43 | 1 3 42 | vtxdgfisnn0 | ⊢ ( ( ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ∈ Fin ∧ 𝑈 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℕ0 ) |
| 44 | 39 2 43 | mp2an | ⊢ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℕ0 |
| 45 | 44 | nn0rei | ⊢ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℝ |
| 46 | 1re | ⊢ 1 ∈ ℝ | |
| 47 | rexadd | ⊢ ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 1 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) + 1 ) ) | |
| 48 | 45 46 47 | mp2an | ⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 1 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) + 1 ) |
| 49 | 5 | oveq1i | ⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) + 1 ) = ( 𝑃 + 1 ) |
| 50 | 38 48 49 | 3eqtri | ⊢ ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( 𝑃 + 1 ) |