This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The degree of a vertex in an empty graph is zero, because there are no edges. This is the base case for the induction for calculating the degree of a vertex, for example in a Königsberg graph (see also the induction steps vdegp1ai , vdegp1bi and vdegp1ci ). (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 11-Dec-2020) (Revised by AV, 22-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdgf.v | |- V = ( Vtx ` G ) |
|
| vtxdg0e.i | |- I = ( iEdg ` G ) |
||
| Assertion | vtxdg0e | |- ( ( U e. V /\ I = (/) ) -> ( ( VtxDeg ` G ) ` U ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdgf.v | |- V = ( Vtx ` G ) |
|
| 2 | vtxdg0e.i | |- I = ( iEdg ` G ) |
|
| 3 | 2 | eqeq1i | |- ( I = (/) <-> ( iEdg ` G ) = (/) ) |
| 4 | dmeq | |- ( ( iEdg ` G ) = (/) -> dom ( iEdg ` G ) = dom (/) ) |
|
| 5 | dm0 | |- dom (/) = (/) |
|
| 6 | 4 5 | eqtrdi | |- ( ( iEdg ` G ) = (/) -> dom ( iEdg ` G ) = (/) ) |
| 7 | 0fi | |- (/) e. Fin |
|
| 8 | 6 7 | eqeltrdi | |- ( ( iEdg ` G ) = (/) -> dom ( iEdg ` G ) e. Fin ) |
| 9 | 3 8 | sylbi | |- ( I = (/) -> dom ( iEdg ` G ) e. Fin ) |
| 10 | simpl | |- ( ( U e. V /\ I = (/) ) -> U e. V ) |
|
| 11 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 12 | eqid | |- dom ( iEdg ` G ) = dom ( iEdg ` G ) |
|
| 13 | 1 11 12 | vtxdgfival | |- ( ( dom ( iEdg ` G ) e. Fin /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = ( ( # ` { x e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` x ) } ) + ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { U } } ) ) ) |
| 14 | 9 10 13 | syl2an2 | |- ( ( U e. V /\ I = (/) ) -> ( ( VtxDeg ` G ) ` U ) = ( ( # ` { x e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` x ) } ) + ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { U } } ) ) ) |
| 15 | 3 6 | sylbi | |- ( I = (/) -> dom ( iEdg ` G ) = (/) ) |
| 16 | 15 | adantl | |- ( ( U e. V /\ I = (/) ) -> dom ( iEdg ` G ) = (/) ) |
| 17 | rabeq | |- ( dom ( iEdg ` G ) = (/) -> { x e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` x ) } = { x e. (/) | U e. ( ( iEdg ` G ) ` x ) } ) |
|
| 18 | rab0 | |- { x e. (/) | U e. ( ( iEdg ` G ) ` x ) } = (/) |
|
| 19 | 17 18 | eqtrdi | |- ( dom ( iEdg ` G ) = (/) -> { x e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` x ) } = (/) ) |
| 20 | 19 | fveq2d | |- ( dom ( iEdg ` G ) = (/) -> ( # ` { x e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` x ) } ) = ( # ` (/) ) ) |
| 21 | hash0 | |- ( # ` (/) ) = 0 |
|
| 22 | 20 21 | eqtrdi | |- ( dom ( iEdg ` G ) = (/) -> ( # ` { x e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` x ) } ) = 0 ) |
| 23 | rabeq | |- ( dom ( iEdg ` G ) = (/) -> { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { U } } = { x e. (/) | ( ( iEdg ` G ) ` x ) = { U } } ) |
|
| 24 | 23 | fveq2d | |- ( dom ( iEdg ` G ) = (/) -> ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { U } } ) = ( # ` { x e. (/) | ( ( iEdg ` G ) ` x ) = { U } } ) ) |
| 25 | rab0 | |- { x e. (/) | ( ( iEdg ` G ) ` x ) = { U } } = (/) |
|
| 26 | 25 | fveq2i | |- ( # ` { x e. (/) | ( ( iEdg ` G ) ` x ) = { U } } ) = ( # ` (/) ) |
| 27 | 26 21 | eqtri | |- ( # ` { x e. (/) | ( ( iEdg ` G ) ` x ) = { U } } ) = 0 |
| 28 | 24 27 | eqtrdi | |- ( dom ( iEdg ` G ) = (/) -> ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { U } } ) = 0 ) |
| 29 | 22 28 | oveq12d | |- ( dom ( iEdg ` G ) = (/) -> ( ( # ` { x e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` x ) } ) + ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { U } } ) ) = ( 0 + 0 ) ) |
| 30 | 16 29 | syl | |- ( ( U e. V /\ I = (/) ) -> ( ( # ` { x e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` x ) } ) + ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { U } } ) ) = ( 0 + 0 ) ) |
| 31 | 00id | |- ( 0 + 0 ) = 0 |
|
| 32 | 30 31 | eqtrdi | |- ( ( U e. V /\ I = (/) ) -> ( ( # ` { x e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` x ) } ) + ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { U } } ) ) = 0 ) |
| 33 | 14 32 | eqtrd | |- ( ( U e. V /\ I = (/) ) -> ( ( VtxDeg ` G ) ` U ) = 0 ) |