This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The induction step for a vertex degree calculation. If the degree of U in the edge set E is P , then adding { X , Y } to the edge set, where X =/= U =/= Y , yields degree P as well. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Revised by AV, 3-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vdegp1ai.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vdegp1ai.u | ⊢ 𝑈 ∈ 𝑉 | ||
| vdegp1ai.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| vdegp1ai.w | ⊢ 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } | ||
| vdegp1ai.d | ⊢ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 𝑃 | ||
| vdegp1ai.vf | ⊢ ( Vtx ‘ 𝐹 ) = 𝑉 | ||
| vdegp1ai.x | ⊢ 𝑋 ∈ 𝑉 | ||
| vdegp1ai.xu | ⊢ 𝑋 ≠ 𝑈 | ||
| vdegp1ai.y | ⊢ 𝑌 ∈ 𝑉 | ||
| vdegp1ai.yu | ⊢ 𝑌 ≠ 𝑈 | ||
| vdegp1ai.f | ⊢ ( iEdg ‘ 𝐹 ) = ( 𝐼 ++ 〈“ { 𝑋 , 𝑌 } ”〉 ) | ||
| Assertion | vdegp1ai | ⊢ ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = 𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vdegp1ai.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vdegp1ai.u | ⊢ 𝑈 ∈ 𝑉 | |
| 3 | vdegp1ai.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 4 | vdegp1ai.w | ⊢ 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } | |
| 5 | vdegp1ai.d | ⊢ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 𝑃 | |
| 6 | vdegp1ai.vf | ⊢ ( Vtx ‘ 𝐹 ) = 𝑉 | |
| 7 | vdegp1ai.x | ⊢ 𝑋 ∈ 𝑉 | |
| 8 | vdegp1ai.xu | ⊢ 𝑋 ≠ 𝑈 | |
| 9 | vdegp1ai.y | ⊢ 𝑌 ∈ 𝑉 | |
| 10 | vdegp1ai.yu | ⊢ 𝑌 ≠ 𝑈 | |
| 11 | vdegp1ai.f | ⊢ ( iEdg ‘ 𝐹 ) = ( 𝐼 ++ 〈“ { 𝑋 , 𝑌 } ”〉 ) | |
| 12 | prex | ⊢ { 𝑋 , 𝑌 } ∈ V | |
| 13 | wrdf | ⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → 𝐼 : ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) | |
| 14 | 13 | ffund | ⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → Fun 𝐼 ) |
| 15 | 4 14 | mp1i | ⊢ ( { 𝑋 , 𝑌 } ∈ V → Fun 𝐼 ) |
| 16 | 6 | a1i | ⊢ ( { 𝑋 , 𝑌 } ∈ V → ( Vtx ‘ 𝐹 ) = 𝑉 ) |
| 17 | wrdv | ⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → 𝐼 ∈ Word V ) | |
| 18 | 4 17 | ax-mp | ⊢ 𝐼 ∈ Word V |
| 19 | cats1un | ⊢ ( ( 𝐼 ∈ Word V ∧ { 𝑋 , 𝑌 } ∈ V ) → ( 𝐼 ++ 〈“ { 𝑋 , 𝑌 } ”〉 ) = ( 𝐼 ∪ { 〈 ( ♯ ‘ 𝐼 ) , { 𝑋 , 𝑌 } 〉 } ) ) | |
| 20 | 18 19 | mpan | ⊢ ( { 𝑋 , 𝑌 } ∈ V → ( 𝐼 ++ 〈“ { 𝑋 , 𝑌 } ”〉 ) = ( 𝐼 ∪ { 〈 ( ♯ ‘ 𝐼 ) , { 𝑋 , 𝑌 } 〉 } ) ) |
| 21 | 11 20 | eqtrid | ⊢ ( { 𝑋 , 𝑌 } ∈ V → ( iEdg ‘ 𝐹 ) = ( 𝐼 ∪ { 〈 ( ♯ ‘ 𝐼 ) , { 𝑋 , 𝑌 } 〉 } ) ) |
| 22 | fvexd | ⊢ ( { 𝑋 , 𝑌 } ∈ V → ( ♯ ‘ 𝐼 ) ∈ V ) | |
| 23 | wrdlndm | ⊢ ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( ♯ ‘ 𝐼 ) ∉ dom 𝐼 ) | |
| 24 | 4 23 | mp1i | ⊢ ( { 𝑋 , 𝑌 } ∈ V → ( ♯ ‘ 𝐼 ) ∉ dom 𝐼 ) |
| 25 | 2 | a1i | ⊢ ( { 𝑋 , 𝑌 } ∈ V → 𝑈 ∈ 𝑉 ) |
| 26 | id | ⊢ ( { 𝑋 , 𝑌 } ∈ V → { 𝑋 , 𝑌 } ∈ V ) | |
| 27 | 8 | necomi | ⊢ 𝑈 ≠ 𝑋 |
| 28 | 10 | necomi | ⊢ 𝑈 ≠ 𝑌 |
| 29 | 27 28 | prneli | ⊢ 𝑈 ∉ { 𝑋 , 𝑌 } |
| 30 | 29 | a1i | ⊢ ( { 𝑋 , 𝑌 } ∈ V → 𝑈 ∉ { 𝑋 , 𝑌 } ) |
| 31 | 1 3 15 16 21 22 24 25 26 30 | p1evtxdeq | ⊢ ( { 𝑋 , 𝑌 } ∈ V → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ) |
| 32 | 12 31 | ax-mp | ⊢ ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) |
| 33 | 32 5 | eqtri | ⊢ ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = 𝑃 |