This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The measure of a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | volioc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 (,] 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vol0 | ⊢ ( vol ‘ ∅ ) = 0 | |
| 2 | oveq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 (,] 𝐴 ) = ( 𝐴 (,] 𝐵 ) ) | |
| 3 | 2 | eqcomd | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 (,] 𝐵 ) = ( 𝐴 (,] 𝐴 ) ) |
| 4 | leid | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ 𝐴 ) | |
| 5 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 6 | ioc0 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( ( 𝐴 (,] 𝐴 ) = ∅ ↔ 𝐴 ≤ 𝐴 ) ) | |
| 7 | 5 5 6 | syl2anc | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 (,] 𝐴 ) = ∅ ↔ 𝐴 ≤ 𝐴 ) ) |
| 8 | 4 7 | mpbird | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 (,] 𝐴 ) = ∅ ) |
| 9 | 3 8 | sylan9eqr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 𝐵 ) → ( 𝐴 (,] 𝐵 ) = ∅ ) |
| 10 | 9 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 𝐵 ) → ( vol ‘ ( 𝐴 (,] 𝐵 ) ) = ( vol ‘ ∅ ) ) |
| 11 | eqcom | ⊢ ( 𝐴 = 𝐵 ↔ 𝐵 = 𝐴 ) | |
| 12 | 11 | biimpi | ⊢ ( 𝐴 = 𝐵 → 𝐵 = 𝐴 ) |
| 13 | 12 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 𝐵 ) → 𝐵 = 𝐴 ) |
| 14 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ ℂ ) |
| 16 | 13 15 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ ℂ ) |
| 17 | 16 13 | subeq0bd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 𝐵 ) → ( 𝐵 − 𝐴 ) = 0 ) |
| 18 | 1 10 17 | 3eqtr4a | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 𝐵 ) → ( vol ‘ ( 𝐴 (,] 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 19 | 18 | 3ad2antl1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐴 = 𝐵 ) → ( vol ‘ ( 𝐴 (,] 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 20 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) → 𝐴 ∈ ℝ ) | |
| 21 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) → 𝐵 ∈ ℝ ) | |
| 22 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) → 𝐴 ≤ 𝐵 ) | |
| 23 | eqcom | ⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) | |
| 24 | 23 | biimpi | ⊢ ( 𝐵 = 𝐴 → 𝐴 = 𝐵 ) |
| 25 | 24 | necon3bi | ⊢ ( ¬ 𝐴 = 𝐵 → 𝐵 ≠ 𝐴 ) |
| 26 | 25 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) → 𝐵 ≠ 𝐴 ) |
| 27 | 20 21 22 26 | leneltd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) → 𝐴 < 𝐵 ) |
| 28 | 5 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 29 | rexr | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) | |
| 30 | 29 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 31 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) | |
| 32 | ioounsn | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) | |
| 33 | 28 30 31 32 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) |
| 34 | 33 | eqcomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 (,] 𝐵 ) = ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) |
| 35 | 34 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 (,] 𝐵 ) ) = ( vol ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) |
| 36 | ioombl | ⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol | |
| 37 | 36 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
| 38 | snmbl | ⊢ ( 𝐵 ∈ ℝ → { 𝐵 } ∈ dom vol ) | |
| 39 | 38 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → { 𝐵 } ∈ dom vol ) |
| 40 | ubioo | ⊢ ¬ 𝐵 ∈ ( 𝐴 (,) 𝐵 ) | |
| 41 | disjsn | ⊢ ( ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 42 | 40 41 | mpbir | ⊢ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐵 } ) = ∅ |
| 43 | 42 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐵 } ) = ∅ ) |
| 44 | ioovolcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ) | |
| 45 | 44 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ) |
| 46 | volsn | ⊢ ( 𝐵 ∈ ℝ → ( vol ‘ { 𝐵 } ) = 0 ) | |
| 47 | 0red | ⊢ ( 𝐵 ∈ ℝ → 0 ∈ ℝ ) | |
| 48 | 46 47 | eqeltrd | ⊢ ( 𝐵 ∈ ℝ → ( vol ‘ { 𝐵 } ) ∈ ℝ ) |
| 49 | 48 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( vol ‘ { 𝐵 } ) ∈ ℝ ) |
| 50 | volun | ⊢ ( ( ( ( 𝐴 (,) 𝐵 ) ∈ dom vol ∧ { 𝐵 } ∈ dom vol ∧ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐵 } ) = ∅ ) ∧ ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ∧ ( vol ‘ { 𝐵 } ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) = ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) + ( vol ‘ { 𝐵 } ) ) ) | |
| 51 | 37 39 43 45 49 50 | syl32anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( vol ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) = ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) + ( vol ‘ { 𝐵 } ) ) ) |
| 52 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ ) | |
| 53 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ ) | |
| 54 | 52 53 31 | ltled | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 55 | volioo | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) | |
| 56 | 52 53 54 55 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 57 | 46 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( vol ‘ { 𝐵 } ) = 0 ) |
| 58 | 56 57 | oveq12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) + ( vol ‘ { 𝐵 } ) ) = ( ( 𝐵 − 𝐴 ) + 0 ) ) |
| 59 | 53 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℂ ) |
| 60 | 14 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℂ ) |
| 61 | 59 60 | subcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 62 | 61 | addridd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 − 𝐴 ) + 0 ) = ( 𝐵 − 𝐴 ) ) |
| 63 | 58 62 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) + ( vol ‘ { 𝐵 } ) ) = ( 𝐵 − 𝐴 ) ) |
| 64 | 35 51 63 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 (,] 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 65 | 20 21 27 64 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) → ( vol ‘ ( 𝐴 (,] 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 66 | 19 65 | pm2.61dan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 (,] 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |