This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The measure of a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | volioc | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,] B ) ) = ( B - A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vol0 | |- ( vol ` (/) ) = 0 |
|
| 2 | oveq2 | |- ( A = B -> ( A (,] A ) = ( A (,] B ) ) |
|
| 3 | 2 | eqcomd | |- ( A = B -> ( A (,] B ) = ( A (,] A ) ) |
| 4 | leid | |- ( A e. RR -> A <_ A ) |
|
| 5 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 6 | ioc0 | |- ( ( A e. RR* /\ A e. RR* ) -> ( ( A (,] A ) = (/) <-> A <_ A ) ) |
|
| 7 | 5 5 6 | syl2anc | |- ( A e. RR -> ( ( A (,] A ) = (/) <-> A <_ A ) ) |
| 8 | 4 7 | mpbird | |- ( A e. RR -> ( A (,] A ) = (/) ) |
| 9 | 3 8 | sylan9eqr | |- ( ( A e. RR /\ A = B ) -> ( A (,] B ) = (/) ) |
| 10 | 9 | fveq2d | |- ( ( A e. RR /\ A = B ) -> ( vol ` ( A (,] B ) ) = ( vol ` (/) ) ) |
| 11 | eqcom | |- ( A = B <-> B = A ) |
|
| 12 | 11 | biimpi | |- ( A = B -> B = A ) |
| 13 | 12 | adantl | |- ( ( A e. RR /\ A = B ) -> B = A ) |
| 14 | recn | |- ( A e. RR -> A e. CC ) |
|
| 15 | 14 | adantr | |- ( ( A e. RR /\ A = B ) -> A e. CC ) |
| 16 | 13 15 | eqeltrd | |- ( ( A e. RR /\ A = B ) -> B e. CC ) |
| 17 | 16 13 | subeq0bd | |- ( ( A e. RR /\ A = B ) -> ( B - A ) = 0 ) |
| 18 | 1 10 17 | 3eqtr4a | |- ( ( A e. RR /\ A = B ) -> ( vol ` ( A (,] B ) ) = ( B - A ) ) |
| 19 | 18 | 3ad2antl1 | |- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ A = B ) -> ( vol ` ( A (,] B ) ) = ( B - A ) ) |
| 20 | simpl1 | |- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ -. A = B ) -> A e. RR ) |
|
| 21 | simpl2 | |- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ -. A = B ) -> B e. RR ) |
|
| 22 | simpl3 | |- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ -. A = B ) -> A <_ B ) |
|
| 23 | eqcom | |- ( B = A <-> A = B ) |
|
| 24 | 23 | biimpi | |- ( B = A -> A = B ) |
| 25 | 24 | necon3bi | |- ( -. A = B -> B =/= A ) |
| 26 | 25 | adantl | |- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ -. A = B ) -> B =/= A ) |
| 27 | 20 21 22 26 | leneltd | |- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ -. A = B ) -> A < B ) |
| 28 | 5 | 3ad2ant1 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> A e. RR* ) |
| 29 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 30 | 29 | 3ad2ant2 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> B e. RR* ) |
| 31 | simp3 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> A < B ) |
|
| 32 | ioounsn | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) |
|
| 33 | 28 30 31 32 | syl3anc | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) |
| 34 | 33 | eqcomd | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( A (,] B ) = ( ( A (,) B ) u. { B } ) ) |
| 35 | 34 | fveq2d | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( vol ` ( A (,] B ) ) = ( vol ` ( ( A (,) B ) u. { B } ) ) ) |
| 36 | ioombl | |- ( A (,) B ) e. dom vol |
|
| 37 | 36 | a1i | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( A (,) B ) e. dom vol ) |
| 38 | snmbl | |- ( B e. RR -> { B } e. dom vol ) |
|
| 39 | 38 | 3ad2ant2 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> { B } e. dom vol ) |
| 40 | ubioo | |- -. B e. ( A (,) B ) |
|
| 41 | disjsn | |- ( ( ( A (,) B ) i^i { B } ) = (/) <-> -. B e. ( A (,) B ) ) |
|
| 42 | 40 41 | mpbir | |- ( ( A (,) B ) i^i { B } ) = (/) |
| 43 | 42 | a1i | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( A (,) B ) i^i { B } ) = (/) ) |
| 44 | ioovolcl | |- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A (,) B ) ) e. RR ) |
|
| 45 | 44 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( vol ` ( A (,) B ) ) e. RR ) |
| 46 | volsn | |- ( B e. RR -> ( vol ` { B } ) = 0 ) |
|
| 47 | 0red | |- ( B e. RR -> 0 e. RR ) |
|
| 48 | 46 47 | eqeltrd | |- ( B e. RR -> ( vol ` { B } ) e. RR ) |
| 49 | 48 | 3ad2ant2 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( vol ` { B } ) e. RR ) |
| 50 | volun | |- ( ( ( ( A (,) B ) e. dom vol /\ { B } e. dom vol /\ ( ( A (,) B ) i^i { B } ) = (/) ) /\ ( ( vol ` ( A (,) B ) ) e. RR /\ ( vol ` { B } ) e. RR ) ) -> ( vol ` ( ( A (,) B ) u. { B } ) ) = ( ( vol ` ( A (,) B ) ) + ( vol ` { B } ) ) ) |
|
| 51 | 37 39 43 45 49 50 | syl32anc | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( vol ` ( ( A (,) B ) u. { B } ) ) = ( ( vol ` ( A (,) B ) ) + ( vol ` { B } ) ) ) |
| 52 | simp1 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> A e. RR ) |
|
| 53 | simp2 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> B e. RR ) |
|
| 54 | 52 53 31 | ltled | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> A <_ B ) |
| 55 | volioo | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) ) |
|
| 56 | 52 53 54 55 | syl3anc | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) ) |
| 57 | 46 | 3ad2ant2 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( vol ` { B } ) = 0 ) |
| 58 | 56 57 | oveq12d | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( vol ` ( A (,) B ) ) + ( vol ` { B } ) ) = ( ( B - A ) + 0 ) ) |
| 59 | 53 | recnd | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> B e. CC ) |
| 60 | 14 | 3ad2ant1 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> A e. CC ) |
| 61 | 59 60 | subcld | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( B - A ) e. CC ) |
| 62 | 61 | addridd | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( B - A ) + 0 ) = ( B - A ) ) |
| 63 | 58 62 | eqtrd | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( vol ` ( A (,) B ) ) + ( vol ` { B } ) ) = ( B - A ) ) |
| 64 | 35 51 63 | 3eqtrd | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( vol ` ( A (,] B ) ) = ( B - A ) ) |
| 65 | 20 21 27 64 | syl3anc | |- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ -. A = B ) -> ( vol ` ( A (,] B ) ) = ( B - A ) ) |
| 66 | 19 65 | pm2.61dan | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,] B ) ) = ( B - A ) ) |